Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan 25:1492:63-71.
doi: 10.1016/j.brainres.2012.11.024. Epub 2012 Nov 23.

Vagus nerve stimulation induced long-lasting enhancement of synaptic transmission and decreased granule cell discharge in the hippocampal dentate gyrus of urethane-anesthetized rats

Affiliations

Vagus nerve stimulation induced long-lasting enhancement of synaptic transmission and decreased granule cell discharge in the hippocampal dentate gyrus of urethane-anesthetized rats

Hiroyuki Ura et al. Brain Res. .

Abstract

Vagus nerve stimulation (VNS) ameliorates deficits of hippocampal functions, such as contextual learning and memory, probably through direct modulation of neuronal activity. Previous studies showed that VNS enhanced excitatory synaptic transmission in the hippocampal CA3 area via activation of β-adrenergic receptors. However, effects of VNS on excitatory synaptic transmission and action potential (AP) discharge of granule cells (GCs) in the dentate gyrus have not been studied. Urethane-anesthetized rats were used to investigate whether VNS influences synaptic transmission efficacy at perforant path-GC synapses and population spike discharge in the dentate gyrus. Intermittent burst stimulation of the left vagus nerve (30Hz for 30s at an inter-train interval of 5min for 1h) significantly enhanced the perforant path-GC synaptic transmission efficacy in the dentate gyrus for at least 2h, indicating that VNS can induce a long-lasting enhancement of synaptic transmission in this area, similar to the situation observed in the CA3 area. In contrast, a 60-min period of VNS significantly reduced population spike amplitude (a parameter reflecting synchronized AP discharge of GCs) for a given excitatory postsynaptic potential. These findings suggest that acute VNS enhances the excitatory synaptic transmission and reduces synchronized AP discharge of GCs in the dentate gyrus. It is likely that enhancement of excitatory synaptic transmission and reduction of GC excitability contribute VNS treatment efficacy for learning deficits and intractable epilepsy, respectively.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources