FLX pyrosequencing analysis of the effects of the brown-algal fermentable polysaccharides alginate and laminaran on rat cecal microbiotas
- PMID: 23183985
- PMCID: PMC3568576
- DOI: 10.1128/AEM.02354-12
FLX pyrosequencing analysis of the effects of the brown-algal fermentable polysaccharides alginate and laminaran on rat cecal microbiotas
Abstract
Edible brown algae are used as major food material in Far East Asian countries, particularly in South Korea and Japan. They contain fermentable dietary fibers, alginic acid (uronic acid polymer) and laminaran (β-1,3-glucan), that are fermented into organic acids by intestinal bacteria. To clarify the effect of edible algae on the intestinal environment, the cecal microbiotas of rats fed diets containing no dietary fiber (control) or 2% (wt/wt) sodium alginate or laminaran for 2 weeks were analyzed using FLX amplicon pyrosequencing with bar-coded primers targeting the bacterial 16S rRNA gene. The most abundant phylum in all groups was Firmicutes. Specifically, Allobaculum was dominant in all diet groups. In addition, Bacteroides capillosus (37.1%) was abundant in the alginate group, while Clostridium ramosum (3.14%) and Parabacteroides distasonis (1.36%) were only detected in the laminaran group. Furthermore, rats fed alginate showed simplified microbiota phylotypes compared with others. With respect to cecal chemical compounds, laminaran increased cecal organic acid levels, particularly propionic acid. Alginate increased total cecal organic acids. Cecal putrefactive compounds, such as indole, H(2)S, and phenol, were decreased by both alginate and laminaran. These results indicate that edible brown algae can alter the intestinal environment, with fermentation by intestinal microbiota.
Figures






Similar articles
-
Inhibitory effects of laminaran and alginate on production of putrefactive compounds from soy protein by intestinal microbiota in vitro and in rats.Carbohydr Polym. 2016 Jun 5;143:61-9. doi: 10.1016/j.carbpol.2016.01.064. Epub 2016 Feb 4. Carbohydr Polym. 2016. PMID: 27083344
-
Detection and isolation of low molecular weight alginate- and laminaran-susceptible gut indigenous bacteria from ICR mice.Carbohydr Polym. 2020 Jun 15;238:116205. doi: 10.1016/j.carbpol.2020.116205. Epub 2020 Mar 27. Carbohydr Polym. 2020. PMID: 32299574
-
Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal.Appl Microbiol Biotechnol. 2014 Mar;98(6):2779-87. doi: 10.1007/s00253-013-5271-5. Epub 2013 Oct 10. Appl Microbiol Biotechnol. 2014. PMID: 24113824
-
The Pros and Cons of Using Algal Polysaccharides as Prebiotics.Front Nutr. 2020 Sep 22;7:163. doi: 10.3389/fnut.2020.00163. eCollection 2020. Front Nutr. 2020. PMID: 33072794 Free PMC article. Review.
-
Alginate catabolic systems in marine bacteria.Curr Opin Microbiol. 2025 Feb;83:102564. doi: 10.1016/j.mib.2024.102564. Epub 2024 Dec 9. Curr Opin Microbiol. 2025. PMID: 39657303 Review.
Cited by
-
Prenatal caprine milk oligosaccharide consumption affects the development of mice offspring.Mol Nutr Food Res. 2016 Sep;60(9):2076-85. doi: 10.1002/mnfr.201600118. Epub 2016 May 27. Mol Nutr Food Res. 2016. PMID: 27067267 Free PMC article.
-
Similarities and differences of oligo/poly-saccharides' impact on human fecal microbiota identified by in vitro fermentation.Appl Microbiol Biotechnol. 2021 Oct;105(19):7475-7486. doi: 10.1007/s00253-021-11548-9. Epub 2021 Sep 6. Appl Microbiol Biotechnol. 2021. PMID: 34487206
-
Melanoma and brown seaweed: an integrative hypothesis.J Appl Phycol. 2017;29(2):941-948. doi: 10.1007/s10811-016-0979-0. Epub 2016 Oct 11. J Appl Phycol. 2017. PMID: 28458463 Free PMC article.
-
Potential Bioactive Compounds from Seaweed for Diabetes Management.Mar Drugs. 2015 Aug 21;13(8):5447-91. doi: 10.3390/md13085447. Mar Drugs. 2015. PMID: 26308010 Free PMC article. Review.
-
Human Gut Microbiota and Drug Metabolism.Microb Ecol. 2023 Jul;86(1):97-111. doi: 10.1007/s00248-022-02081-x. Epub 2022 Jul 23. Microb Ecol. 2023. PMID: 35869999 Free PMC article. Review.
References
-
- Dethlefsen L, Huse S, Sogin ML, Relman DA. 2008. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6:e280 doi:10.1371/journal.pbio.0060280 - DOI - PMC - PubMed
-
- Sears CL. 2005. A dynamic partnership: celebrating our intestinal flora. Anaerobe 11:247–251 - PubMed
-
- Nakamura S, Kuta T, An C, Kanno T, Takahashi H, Kimura B. 2012. Inhibitory effects of Leuconostoc mesenteroides 1RM3 isolated from narezushi, a fermented fish with rice, on Listeria monocytogenes infection to Caco-2 cells and A/J. mice. Anaerobe 18:19–24 - PubMed
-
- Willing BP, Russell SL, Finlay BB. 2011. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 9:233–243 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources