Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(11):e50195.
doi: 10.1371/journal.pone.0050195. Epub 2012 Nov 21.

Regulation of the formyl peptide receptor 1 (FPR1) gene in primary human macrophages

Affiliations

Regulation of the formyl peptide receptor 1 (FPR1) gene in primary human macrophages

Claudio Gemperle et al. PLoS One. 2012.

Abstract

The formyl peptide receptor 1 (FPR1) is mainly expressed by mammalian phagocytic leukocytes and plays a role in chemotaxis, killing of microorganisms through phagocytosis, and the generation of reactive oxygen species. A large number of ligands have been identified triggering FPR1 including formylated and non-formylated peptides of microbial and endogenous origin. While the expression of FPR1 in neutrophils has been investigated intensively, knowledge on the regulation of FPR1 expression in polarized macrophages is lacking. In this study we show that primary human neutrophils, monocytes and resting macrophages do express the receptor on their cell surface. Polarization of macrophages with IFNγ, LPS and with the TLR8 ligand 3M-002 further increases FPR1 mRNA levels but does not consistently increase protein expression or chemotaxis towards the FPR1 ligand fMLF. In contrast, polarization of primary human macrophages with IL-4 and IL-13 leading to the alternative activated macrophages, reduces FPR1 cell surface expression and abolishes chemotaxis towards fMLF. These results show that M2 macrophages will not react to triggering of FPR1, limiting the role for FPR1 to chemotaxis and superoxide production of resting and pro-inflammatory M1 macrophages.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. FPR1 cell surface expression on human neutrophils, monocytes, and macrophages.
FACS analysis was performed to investigate cell surface expression of FPR1. A) Neutrophils. B) Monocytes. C) 9 day old macrophages. Autofluorescence of the cells is shown in light grey, the isotype control in grey and cells labeled with FPR1 Ab in black. D) Quantitative representation of the FPR1 median fluorescence intensity (antibody MFI minus isotype MFI) NG: neutrophils (n = 3). MO: monocytes (n = 5). MA: 9 day old macrophages (n = 9).
Figure 2
Figure 2. Regulation of FPR1 mRNA expression in human macrophages.
A) Relative mRNA expression of FPR1 after stimulation of human macrophages with different stimuli for 24 hours. IL-3 (20 ng/ml), IL-4 (10 ng/ml), IL-13 (10 ng/ml), IL-1β (5 ng/ml), IL-6 (10 ng/ml), INFγ (50 ng/ml), TNFα (1 ng/ml), CpG (100 ng/ml), LPS (100 ng/ml), Poly I:C (1 ng/ml), 3M-001 (3 µM), 3M-002 (3 µM). B) Time-course experiment of FPR1 mRNA expression in macrophages stimulated with IL-4 (10 ng/ml) (dotted) and IL-13 (10 ng/ml) (white) for 24, 48 and 72 hours. The values are normalized for GAPDH mRNA expression and are presented relative to non-stimulated control macrophages (black). Bars display the mean and the standard deviation (±SD) of three independent experiments. *p<0.05, **p<0.01.
Figure 3
Figure 3. Regulation of FPR1 cell surface expression in human macrophages.
FACS analysis was performed to investigate cell surface expression of FPR1 upon treatment with the indicated stimuli. A) FPR1 protein expression after stimulation of human macrophages for 48 hours with stimuli which were shown to regulate FPR1 mRNA expression (IL-4 (10 ng/ml), IL-13 (10 ng/ml), INFγ (50 ng/ml), LPS (100 ng/ml), 3M-002 (3 µM)). B) Time-course experiment of FPR1 protein expression in controls macrophages (black), or macrophages stimulated with IL-4 (10 ng/ml) (dotted) and IL-13 (10 ng/ml) (white) for 24, 48 and 72 hours. Values are presented relative to unstimulated macrophages. Bars display the mean and the standard deviation (±SD) of three independent experiments. *p<0.05, **p<0.01.
Figure 4
Figure 4. fLMF chemotaxis assays with human macrophages.
Control (Ctrl) and IL-4 (10 ng/ml), IL-13 (10 ng/ml), IFNγ (50 ng/ml), LPS (100 ng/ml), and 3M-002 (3 µM) stimulated macrophages were allowed to migrate towards the chemotactic factor fLMF (+). Medium without chemotactic factor (−) was used as control for basal migration in each experiment. Graphs show the mean migration index compared to each individual control (n = 3) and error bars display the standard deviation (±SD). *p<0.05; **p<0.01.

Similar articles

Cited by

References

    1. Carp H (1982) Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils. J Exp Med 155: 264–275. - PMC - PubMed
    1. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, et al. (2009) International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 61: 119–161. - PMC - PubMed
    1. Rabiet MJ, Huet E, Boulay F (2007) The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 89: 1089–1106. - PMC - PubMed
    1. Fu H, Karlsson J, Bylund J, Movitz C, Karlsson A, et al. (2006) Ligand recognition and activation of formyl peptide receptors in neutrophils. J Leukoc Biol 79: 247–256. - PubMed
    1. Neptune ER, Iiri T, Bourne HR (1999) Galphai is not required for chemotaxis mediated by Gi-coupled receptors. J Biol Chem 274: 2824–2828. - PubMed

Publication types

MeSH terms