Passive electroreception in aquatic mammals
- PMID: 23187861
- DOI: 10.1007/s00359-012-0780-8
Passive electroreception in aquatic mammals
Abstract
Passive electroreception is a sensory modality in many aquatic vertebrates, predominantly fishes. Using passive electroreception, the animal can detect and analyze electric fields in its environment. Most electric fields in the environment are of biogenic origin, often produced by prey items. These electric fields can be relatively strong and can be a highly valuable source of information for a predator, as underlined by the fact that electroreception has evolved multiple times independently. The only mammals that possess electroreception are the platypus (Ornithorhynchus anatinus) and the echidnas (Tachyglossidae) from the monotreme order, and, recently discovered, the Guiana dolphin (Sotalia guianensis) from the cetacean order. Here we review the morphology, function and origin of the electroreceptors in the two aquatic species, the platypus and the Guiana dolphin. The morphology shows certain similarities, also similar to ampullary electroreceptors in fishes, that provide cues for the search for electroreceptors in more vertebrate and invertebrate species. The function of these organs appears to be very similar. Both species search for prey animals in low-visibility conditions or while digging in the substrate, and sensory thresholds are within one order of magnitude. The electroreceptors in both species are innervated by the trigeminal nerve. The origin of the accessory structures, however, is completely different; electroreceptors in the platypus have developed from skin glands, in the Guiana dolphin, from the vibrissal system.
Similar articles
-
Electroreception in the Guiana dolphin (Sotalia guianensis).Proc Biol Sci. 2012 Feb 22;279(1729):663-8. doi: 10.1098/rspb.2011.1127. Epub 2011 Jul 27. Proc Biol Sci. 2012. PMID: 21795271 Free PMC article.
-
Distinct development of peripheral trigeminal pathways in the platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus).Brain Behav Evol. 2012;79(2):113-27. doi: 10.1159/000334469. Epub 2011 Dec 16. Brain Behav Evol. 2012. PMID: 22179203
-
Sensory receptors in monotremes.Philos Trans R Soc Lond B Biol Sci. 1998 Jul 29;353(1372):1187-98. doi: 10.1098/rstb.1998.0275. Philos Trans R Soc Lond B Biol Sci. 1998. PMID: 9720114 Free PMC article. Review.
-
Passive electroreception in bottlenose dolphins (Tursiops truncatus): implication for micro- and large-scale orientation.J Exp Biol. 2023 Nov 15;226(22):jeb245845. doi: 10.1242/jeb.245845. Epub 2023 Nov 30. J Exp Biol. 2023. PMID: 38035544 Free PMC article.
-
Electroreception in monotremes.J Exp Biol. 1999 May;202(Pt 10):1447-54. doi: 10.1242/jeb.202.10.1447. J Exp Biol. 1999. PMID: 10210685 Review.
Cited by
-
The coelacanth rostral organ is a unique low-resolution electro-detector that facilitates the feeding strike.Sci Rep. 2015 Mar 11;5:8962. doi: 10.1038/srep08962. Sci Rep. 2015. PMID: 25758410 Free PMC article.
-
Insights into Electroreceptor Development and Evolution from Molecular Comparisons with Hair Cells.Integr Comp Biol. 2018 Aug 1;58(2):329-340. doi: 10.1093/icb/icy037. Integr Comp Biol. 2018. PMID: 29846597 Free PMC article.
-
Unraveling circuits of visual perception and cognition through the superior colliculus.Neuron. 2021 Mar 17;109(6):918-937. doi: 10.1016/j.neuron.2021.01.013. Epub 2021 Feb 5. Neuron. 2021. PMID: 33548173 Free PMC article. Review.
-
The follicle-sinus complex of the bottlenose dolphin (Tursiops truncatus). Functional anatomy and possible evolutional significance of its somato-sensory innervation.J Anat. 2021 Apr;238(4):942-955. doi: 10.1111/joa.13345. Epub 2020 Oct 24. J Anat. 2021. PMID: 33099774 Free PMC article.
-
Elaboration and Innervation of the Vibrissal System in the Rock Hyrax (Procavia capensis).Brain Behav Evol. 2015;85(3):170-88. doi: 10.1159/000381415. Epub 2015 May 27. Brain Behav Evol. 2015. PMID: 26022696 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources