Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Mar;13(3):373-84.
doi: 10.2174/1389557511313030006.

The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives

Affiliations
Review

The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives

Russel J Reiter et al. Mini Rev Med Chem. 2013 Mar.

Abstract

Melatonin is an uncommonly widely distributed molecule. It is found throughout the plant and animal kingdoms, i.e., perhaps in every living organism. Within vertebrate organisms, melatonin also has an extremely wide distribution, seemingly being capable of entering every cell and all subcellular compartments. So-called morphophysiological barriers, e.g., the blood-brain barrier, are no impediment to the passage of melatonin and it has a multitude of confirmed functions. We have hypothesized that melatonin originally evolved as a free radical scavenger and during evolution it acquired other important and essential actions. Due to the multi-faceted actions of melatonin and its metabolites as direct free radical scavengers and indirect antioxidants, these agents have been used to abate oxidative damage in a diverse variety of experimental models where free radical destruction is a component. When compared with classic, better-known antioxidants, melatonin is better in terms of limiting destruction of intracellular macromolecules when the damage is a consequence of excessive oxygen or nitrogen-based toxic reactants. Considering the vast array of experimental data that has accumulated which documents melatonin's high efficacy and lack of, or minimal, toxicity over a very wide dose range, it is essential that the usefulness of this agent be more thoroughly tested at the clinical level. The findings from experimental models of numerous diseases overwhelming confirm that this indoleamine would likely have great benefit in aiding humans suffering with conditions that have as their basis tissue and molecular damage resulting from oxygen and nitrogen-based reactants.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources