Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Oct;9(5):549-59.
doi: 10.1586/epr.12.49.

Quantitative proteomic strategies for the identification of microRNA targets

Affiliations
Review

Quantitative proteomic strategies for the identification of microRNA targets

Chongyang Li et al. Expert Rev Proteomics. 2012 Oct.

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs, approximately 22 nucleotides in length, found in diverse organisms. They have emerged in recent years as key regulators of a broad spectrum of cellular functions. miRNAs regulate biological processes by inducing translational inhibition and degradation of their target mRNAs through base pairing to partially or fully complementary sites. In the field of miRNA research, the identification of the targets of individual miRNAs is of utmost importance. Our understanding of the molecular mechanisms by which individual miRNAs modulate cellular functions will remain incomplete until a full set of miRNA targets is identified and validated. Since a miRNA may regulate many of its targets at the translational level without affecting mRNA abundance, proteomic methods are best suited for revealing the full spectrum of miRNA targets. Quantitative proteomics is emerging as a powerful toolbox for identifying miRNA targets and for quantifying the contribution of translational repression by miRNAs. In this review, the authors summarize the quantitative proteomic approaches that have been employed for identification of miRNA targets and discuss current challenges as well as possible ways of overcoming them.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources