Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan 21;19(4):1457-65.
doi: 10.1002/chem.201202600. Epub 2012 Nov 29.

Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic Tb(III) bis(phthalocyaninate)

Affiliations

Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic Tb(III) bis(phthalocyaninate)

Carolina R Ganivet et al. Chemistry. .

Abstract

A series of homoleptic ([Tb(III)(Pc)(2) ]) and heteroleptic ([Tb(III)(Pc)(Pc')]) Tb(III) bis(phthalocyaninate) complexes that contain different peripheral substitution patterns (i.e., tert-butyl or tert-butylphenoxy groups) have been synthesized in their neutral radical forms and then reduced into their corresponding anionic forms as stable tetramethylammonium/tetrabutylammonium salts. All of these compounds were spectroscopically characterized and their magnetic susceptibility properties were investigated. As a general trend, the radical forms exhibited larger energy barriers for spin reversal than their corresponding reduced compounds. Remarkably, heteroleptic complexes that contain electron-donor moieties on one of the two Pc ligands show higher effective barriers and blocking temperatures than their homoleptic derivatives. This result is assigned to the elongation of the N-Tb distances in the substituted macrocycle, which brings the terbium(III) ion closer to the unsubstituted Pc, thus enhancing the ligand-field effect. In particular, heteroleptic [Tb(III) (Pc)(Pc')] complex 4, which contains one octa(tert-butylphenoxy)-substituted Pc ring and one bare Pc ring, exhibits the highest effective barrier and blocking temperature for a single-molecule magnet reported to date.

PubMed Disclaimer

LinkOut - more resources