Concise review: clinical prospects for treating chronic obstructive pulmonary disease with regenerative approaches
- PMID: 23197868
- PMCID: PMC3659729
- DOI: 10.5966/sctm.2012-0065
Concise review: clinical prospects for treating chronic obstructive pulmonary disease with regenerative approaches
Abstract
Chronic obstructive pulmonary disease (COPD) is becoming a major cause of death worldwide. COPD is characterized by a progressive and not fully reversible airflow limitation caused by chronic small airway disease and lung parenchymal destruction. Clinically available drugs improve airflow obstruction and respiratory symptoms but cannot cure the disease. Slowing the progressive lung destruction or rebuilding the destroyed lung structure is a promising strategy to cure COPD. In contrast to small animal models, pharmacological lung regeneration is difficult in human COPD. Maturation, aging, and senescence in COPD lung cells, including endogenous stem cells, may affect the regenerative capacity following pharmacological therapy. The lung is a complex organ composed of more than 40 different cell types; therefore, detailed analyses, such as epigenetic modification analysis, in each specific cell type have not been performed in lungs with COPD. Recently, a method for the direct isolation of individual cell types from human lung has been developed, and fingerprints of each cell type in COPD lungs can be analyzed. Research using this technique combined with the recently discovered lung endogenous stem-progenitor populations will give a better understanding about the fate of COPD lung cells and provide a future for cell-based therapy to treat this intractable disease.
Figures
References
-
- Schittny JC, Mund SI, Stampanoni M. Evidence and structural mechanism for late lung alveolarization. Am J Physiol Lung Cell Mol Physiol. 2008;294:L246–L254. - PubMed
-
- Nakajima C, Kijimoto C, Yokoyama Y, et al. Longitudinal follow-up of pulmonary function after lobectomy in childhood: Factors affecting lung growth. Pediatr Surg Int. 1998;13:341–345. - PubMed
-
- Takeda S, Hsia CC, Wagner E, et al. Compensatory alveolar growth normalizes gas-exchange function in immature dogs after pneumonectomy. J Appl Physiol. 1999;86:1301–1310. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
