Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Feb;25(1):72-7.
doi: 10.1016/j.ceb.2012.10.016. Epub 2012 Nov 27.

Building a centriole

Affiliations
Review

Building a centriole

Tomer Avidor-Reiss et al. Curr Opin Cell Biol. 2013 Feb.

Abstract

Centrioles are the key foundation of centrosomes and cilia, yet a molecular understanding of how they form has only recently begun to emerge. Building a fully functional centriole that can form a centrosome and cilium requires two cell cycles. Centriole building starts with procentriole nucleation, a process that is coordinated by the conserved proteins Plk4/Zyg-1, and Asterless/Cep152. Subsequently, Sas-6, a conserved procentriole protein, self-assembles to provide nine-fold symmetry to the centriole scaffold. The procentriole then continues to elongate into a centriole, a process controlled by Sas-4/CPAP and CP110. Then, centrioles recruit Sas-4-mediated pre-assembled centrosomal complexes from the cytoplasm to form the pericentriolar material (PCM). Finally, CP110 and its interacting proteins are involved in controlling the timing of centriole templating of the cilium.

PubMed Disclaimer

Figures

Fig 1
Fig 1. Building of a centriole
Depiction of the structural and molecular events taking place during the formation of one of the centrioles in a cell (depicted in blue) through two consecutive cell cycles. During the first cell cycle (light gray background, A–E), the basic structure of the centriole is formed. During second cell cycle (darker gray background, F–I), the immature centriole acquires functions in a step-by-step manner until it become fully mature and functional (H). A second centriole formed near the original centriole is depicted in light brown. Major events in the formation of the centriole are noted in blue. Key proteins are indicated in orange. Centrioles are depicted as they would appear from a cross section (B) and a side view (C–I).

References

    1. Januschke J, Llamazares S, Reina J, Gonzalez C. Drosophila neuroblasts retain the daughter centrosome. Nat Commun. 2011;2(243) - PMC - PubMed
    2. * Studying Drosophila neuroblasts using photo converted centrioles and a daughter-centriole-specific markers,the authors show that upon asymmetric mitosis, the old centrosome is inherited by the differentiating daughter cell while the stem cells inherit the new centriole. This demonstrates that old and new centrioles are functionally distinct, but this distinction is used differently from one cell type to the other

    1. Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science. 2007;315(5811):518–521. - PMC - PubMed
    1. Dammermann A, Muller-Reichert T, Pelletier L, Habermann B, Desai A, Oegema K. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev Cell. 2004;7(6):815–829. - PubMed
    1. Pelletier L, O'Toole E, Schwager A, Hyman AA, Muller-Reichert T. Centriole assembly in caenorhabditis elegans. Nature. 2006;444(7119):619–623. - PubMed
    1. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA. Plk4-induced centriole biogenesis in human cells. Dev Cell. 2007;13(2):190–202. - PubMed

Publication types

LinkOut - more resources