Towards metagenome-scale models for industrial applications--the case of Lactic Acid Bacteria
- PMID: 23200025
- DOI: 10.1016/j.copbio.2012.11.003
Towards metagenome-scale models for industrial applications--the case of Lactic Acid Bacteria
Abstract
We review the uses and limitations of modelling approaches that are in use in the field of Lactic Acid Bacteria (LAB). We describe recent developments in model construction and computational methods, starting from application of such models to monocultures. However, since most applications in food biotechnology involve complex nutrient environments and mixed cultures, we extend the scope to discuss developments in modelling such complex systems. With metagenomics and meta-functional genomics data becoming available, the developments in genome-scale community models are discussed. We conclude that exploratory tools are available and useful, but truly predictive mechanistic models will remain a major challenge in the field.
Copyright © 2012 Elsevier Ltd. All rights reserved.
Similar articles
-
Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation.Microbiome. 2016 Oct 19;4(1):56. doi: 10.1186/s40168-016-0201-2. Microbiome. 2016. PMID: 27760570 Free PMC article.
-
[Microevolution of lactic acid bacteria--A review].Wei Sheng Wu Xue Bao. 2015 Nov 4;55(11):1371-7. Wei Sheng Wu Xue Bao. 2015. PMID: 26915217 Review. Chinese.
-
From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria.Biotechnol Adv. 2013 Nov;31(6):764-88. doi: 10.1016/j.biotechadv.2013.03.011. Epub 2013 Apr 6. Biotechnol Adv. 2013. PMID: 23567148 Review.
-
Bacterial strategies along nutrient and time gradients, revealed by metagenomic analysis of laboratory microcosms.FEMS Microbiol Ecol. 2017 Oct 1;93(10). doi: 10.1093/femsec/fix114. FEMS Microbiol Ecol. 2017. PMID: 28962015
-
Lactic acid bacteria: life after genomics.Microb Biotechnol. 2011 May;4(3):318-22. doi: 10.1111/j.1751-7915.2011.00262.x. Microb Biotechnol. 2011. PMID: 21518298 Free PMC article. No abstract available.
Cited by
-
Basic concepts and principles of stoichiometric modeling of metabolic networks.Biotechnol J. 2013 Sep;8(9):997-1008. doi: 10.1002/biot.201200291. Epub 2013 Jul 29. Biotechnol J. 2013. PMID: 23893965 Free PMC article. Review.
-
Microbial Therapeutics Designed for Infant Health.Front Nutr. 2017 Oct 26;4:48. doi: 10.3389/fnut.2017.00048. eCollection 2017. Front Nutr. 2017. PMID: 29124056 Free PMC article. Review.
-
Microbial bioinformatics for food safety and production.Brief Bioinform. 2016 Mar;17(2):283-92. doi: 10.1093/bib/bbv034. Epub 2015 Jun 16. Brief Bioinform. 2016. PMID: 26082168 Free PMC article. Review.
-
Synechocystis: Not Just a Plug-Bug for CO2, but a Green E. coli.Front Bioeng Biotechnol. 2014 Sep 18;2:36. doi: 10.3389/fbioe.2014.00036. eCollection 2014. Front Bioeng Biotechnol. 2014. PMID: 25279375 Free PMC article. Review.
-
More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes.Microbiome. 2017 Jul 14;5(1):78. doi: 10.1186/s40168-017-0299-x. Microbiome. 2017. PMID: 28705224 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous