Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Oct;10(5):246-53.
doi: 10.1016/j.gpb.2012.07.005. Epub 2012 Sep 29.

MicroRNAs in common human diseases

Affiliations
Review

MicroRNAs in common human diseases

Yu Li et al. Genomics Proteomics Bioinformatics. 2012 Oct.

Abstract

MicroRNAs (miRNAs) are a class of short non-coding RNA molecules that have attracted tremendous attention from the biological and biomedical research communities over the past decade. With over 1900 miRNAs discovered in humans to date, many of them have already been implicated in common human disorders. Facilitated by high-throughput genomics and bioinformatics in conjunction with traditional molecular biology techniques and animal models, miRNA research is now positioned to make the transition from laboratories to clinics to deliver profound benefits to public health. Herein, we overview the progress of miRNA research related to human diseases, as well as the potential for miRNA to becoming the next generation of diagnostics and therapeutics.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The road from laboratory to clinic: the promises and challenges of miRNA research The hopscotch course in green is a layout of an ideal path of miRNA research evolved from basic research to clinical practice. Red boxes indicate major challenges at different steps.

References

    1. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and Function. Cell. 2004;116:281–297. - PubMed
    1. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. - PubMed
    1. Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–906. - PubMed
    1. Kozomara A., Griffiths-Jones S. MiRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–D157. - PMC - PubMed
    1. Pasquinelli A.E., Reinhart B.J., Slack F., Martindale M.Q., Kuroda M.I., Maller B. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408:86–89. - PubMed

Publication types