Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 1:103:209-16.
doi: 10.1016/j.colsurfb.2012.10.018. Epub 2012 Oct 17.

Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment

Affiliations

Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment

Fupo He et al. Colloids Surf B Biointerfaces. .

Abstract

In this study, calcium phosphate cement (CPC)-based scaffold with unidirectional lamellar pore structure was fabricated by unidirectional freeze casting. Poly(lactic-co-glycolic acid) (PLGA) was infiltrated into the CPC scaffold to improve its strength and toughness, which compromised the bioactivity and osteoconductivity of CPC. Collagen (Col) was immobilized on the pore surface of the PLGA/CPC scaffold to enhance the bioactivity of the scaffold using plasma treatment under the ammonia (NH(3)) atmosphere. The immobilization of collagen was characterized by infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Compared to the PLGA/CPC composite scaffold, the Col/PLGA/CPC composite scaffold had higher contact angle, porosity and water absorption, while the compressive strength of both scaffolds was comparable. Rat bone marrow mesenchymal stem cells (rMSCs) seeded on the Col/PLGA/CPC scaffold showed markedly improved cell seeding, attachment, proliferation and differentiation than those on the PLGA/CPC scaffold. These results suggest that the surface immobilization of collagen by plasma treatment can improve the bioactivity of the PLGA/CPC scaffold and the Col/PLGA/CPC composite scaffold is a promising candidate for bone tissue engineering.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources