Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 15:42:56-61.
doi: 10.1016/j.bios.2012.10.022. Epub 2012 Oct 26.

Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signal amplification

Affiliations

Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signal amplification

Yongxi Zhao et al. Biosens Bioelectron. .

Abstract

Herein, using DNA adenine methylation (Dam) methyltransferase (MTase) as a model analyte, a simple, rapid, and highly sensitive fluorescence sensing platform for monitoring the activity and inhibition of DNA MTase was developed on the basis of methylation-sensitive cleavage and nicking enzyme-assisted signal amplification. In the presence of Dam MTase, an elaborately designed hairpin probe was methylated. With the help of methylation-sensitive restriction endonuclease DpnI, the methylated hairpin probe could be cleaved to release a single-stranded DNA (ssDNA). Subsequently, this released ssDNA would hybridize with the molecular beacon (MB) to open its hairpin structure, resulting in the restoration of fluorescence signal as well as formation of the double-stranded recognition site for nicking enzyme Nt.BbvCI. Eventually, an amplified fluorescence signal was observed through the enzymatic recycling cleavage of MBs. Based on this unique strategy, a very low detection limit down to 0.06 U/mL was achieved within a short assay time (60 min) in one step, which is superior to those of most existing approaches. Owing to the specific site recognition of MTase toward its substrate, the proposed sensing system was able to readily discriminate Dam MTase from other MTase such as M.SssI and even detect the target in complex biological matrix. Furthermore, the application of the proposed sensing strategy for screening Dam MTase inhibitors was also demonstrated with satisfactory results. This novel method not only provides a promising platform for monitoring activity and inhibition of DNA MTases, but also shows great potentials in biological process researches, drugs discovery and clinical diagnostics.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources