Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Nov 12;4(11):3044-68.
doi: 10.3390/v4113044.

Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies

Affiliations
Review

Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies

Chloé Geller et al. Viruses. .

Abstract

The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV), were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002-2003, the outbreak of severe acute respiratory syndrome (SARS), due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV); led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1), NL63, HKU1 or SARS-CoV) to survive in different environmental conditions (e.g. temperature and humidity), on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections), the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance) make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to survive in the environment and the efficacy of well-known antiseptic-disinfectants against them, with particular focus on the development of new methodologies to evaluate the activity of new antiseptic-disinfectants on viruses.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Evaluation of antiseptic HCoV 229E activity of (a) chlorhexidine (CHX) and (b) the 1,3-bis(bithiazolyl)-tetra-para-sulfonato-calix[4]arene (C[4]S-BTZ) [130,131].

Comment in

References

    1. ICTV (International Committee on Taxonomy on Viruses) Virus Taxonomy: 2011 Release (current) [(Accessed on 24 September 2012)]. Available online: http://ictvonline.org/virusTaxonomy.asp?version=2011.
    1. Almeida J.D., Tyrrell D.A. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J. Gen. Virol. 1967;1:175–178. doi: 10.1099/0022-1317-1-2-175. - DOI - PubMed
    1. Bradburne A.F., Bynoe M.L., Tyrrell D.A. Effects of a "new" human respiratory virus in volunteers. Br. Med. J. 1967;3:767–769. doi: 10.1136/bmj.3.5568.767. - DOI - PMC - PubMed
    1. Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 1966;121:190–193. - PubMed
    1. McIntosh K., Dees J.H., Becker W.B., Kapikian A.Z., Chanock R.M. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. USA. 1967;57:933–940. doi: 10.1073/pnas.57.4.933. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources