Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Nov 30;13(12):16172-222.
doi: 10.3390/ijms131216172.

Base excision repair in physiology and pathology of the central nervous system

Affiliations
Review

Base excision repair in physiology and pathology of the central nervous system

Matthias Bosshard et al. Int J Mol Sci. .

Abstract

Relatively low levels of antioxidant enzymes and high oxygen metabolism result in formation of numerous oxidized DNA lesions in the tissues of the central nervous system. Accumulation of damage in the DNA, due to continuous genotoxic stress, has been linked to both aging and the development of various neurodegenerative disorders. Different DNA repair pathways have evolved to successfully act on damaged DNA and prevent genomic instability. The predominant and essential DNA repair pathway for the removal of small DNA base lesions is base excision repair (BER). In this review we will discuss the current knowledge on the involvement of BER proteins in the maintenance of genetic stability in different brain regions and how changes in the levels of these proteins contribute to aging and the onset of neurodegenerative disorders.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Short-patch (SP-) and long-patch base excision repair (LP-BER) sub-pathways. The damaged base is recognized and excised by a DNA glycosylase, resulting often in AP site formation, which is further processed by APE1. Subsequent end-processing generates 3′-OH and 5′-phosphate (5′-P) termini, enabling access of repair Pols. Depending on the number of newly incorporated nucleotides, the BER pathway divides into two sub-pathways: short-patch BER (SP-BER) and long-patch BER (LP-BER). (A) In SP-BER, a Pol β-mediated single nucleotide incorporation is followed by strand ligation, catalyzed by the XRCC1/DNA ligase III complex; (B) In contrast, LP-BER synthesizes a repair patch consisting of 2–12 nucleotides by: (i) the Hit-and-Run mechanism involving alternating FEN1 cleavage and Pols β synthesis; or (ii) the strand-displacement DNA synthesis concerted by Pols β and δ/ɛ. The 5′-flap, created during strand-displacement DNA synthesis, is removed by the FEN1 generating a nick. The FEN1 created nick is sealed by DNA ligase I. For more details see text.

Similar articles

Cited by

References

    1. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–715. - PubMed
    1. Van Loon B., Markkanen E., Hubscher U. Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair. 2010;9:604–616. - PubMed
    1. Ciccia A., Elledge S.J. The DNA damage response: making it safe to play with knives. Mol. Cell. 2010;40:179–204. - PMC - PubMed
    1. Pardo B., Gomez-Gonzalez B., Aguilera A. DNA repair in mammalian cells: DNA double-strand break repair: How to fix a broken relationship. Cell. Mol. Life Sci. 2009;66:1039–1056. - PMC - PubMed
    1. Magistretti P.J., Pellerin L. Cellular bases of brain energy metabolism and their relevance to functional brain imaging: Evidence for a prominent role of astrocytes. Cerebr. Cortex. 1996;6:50–61. - PubMed

Publication types

MeSH terms

Substances