Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan 9;135(1):409-14.
doi: 10.1021/ja309688m. Epub 2012 Dec 26.

Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization

Affiliations

Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization

Masayo Sakabe et al. J Am Chem Soc. .

Abstract

We have synthesized and evaluated a series of hydroxymethyl rhodamine derivatives and found an intriguing difference of intramolecular spirocyclization behavior: the acetylated derivative of hydroxymethyl rhodamine green (Ac-HMRG) exists as a closed spirocyclic structure in aqueous solution at physiological pH, whereas HMRG itself takes an open nonspirocyclic structure. Ac-HMRG is colorless and nonfluorescent, whereas HMRG is strongly fluorescent. On the basis of these findings, we have developed a general design strategy to obtain highly sensitive fluorescence probes for proteases and glycosidases, by replacing the acetyl group of Ac-HMRG with a substrate moiety of the target enzyme. Specific cleavage of the substrate moiety in the nonfluorescent probe by the target enzyme generates a strong fluorescence signal. To confirm the validity and flexibility of our strategy, we designed and synthesized fluorescence probes for leucine aminopeptidase (Leu-HMRG), fibroblast activation protein (Ac-GlyPro-HMRG), and β-galactosidase (βGal-HMRG). All of these probes were almost nonfluorescent due to the formation of spirocyclic structure, but were converted efficiently to highly fluorescent HMRG by the target enzymes. We confirmed that the probes can be used in living cells. These probes offer great practical advantages, including high sensitivity and rapid response (due to regulation of fluorescence at a single reactive site), as well as resistance to photobleaching, and are expected to be useful for a range of biological and pathological investigations.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources