Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 3:5:666.
doi: 10.1186/1756-0500-5-666.

Placenta-specific novel splice variants of Rho GDP dissociation inhibitor β are highly expressed in cancerous cells

Affiliations

Placenta-specific novel splice variants of Rho GDP dissociation inhibitor β are highly expressed in cancerous cells

Keiichi Hatakeyama et al. BMC Res Notes. .

Abstract

Background: Alternative splicing of pre-mRNA transcripts not only plays a role in normal molecular processes but is also associated with cancer development. While normal transcripts are ubiquitously expressed in normal tissues, splice variants created through abnormal alternative splicing events are often expressed in cancer cells. Although the Rho GDP dissociation inhibitor β (ARHGDIB) gene has been found to be ubiquitously expressed in normal tissues and involved in cancer development, the presence of splice variants of ARHGDIB has not yet been investigated.

Results: Validation analysis for the presence of and exon structures of splice variants of ARHGDIB, performed using reverse-transcriptase polymerase chain reaction and DNA sequencing, successfully identified novel splice variants of ARHGDIB, that is, 6a, 6b, and 6c, in colon, pancreas, stomach, and breast cancer cell lines. Quantitative real-time polymerase chain reaction analysis showed that these variants were also highly expressed in normal placental tissue but not in other types of normal tissue.

Conclusions: Expression of ARHGDIB variants 6a, 6b, and 6c appears to be restricted to cancer cells and normal placental tissue, suggesting that these variants possess cancer-specific functions and, as such, are potential cancer-related biomarkers.

PubMed Disclaimer

Figures

Figure 1
Figure 1
ARHGDIB expression pattern in cell lines and normal tissues. (A) ARHGDIB expression profile in colon, pancreas, stomach, and breast cancer cell lines. Amplicons (i), (ii), (iii), and (iv) correspond to the 4 types of transcripts shown in Panel B. (B) Exon structures on the ARHGDIB gene. The 5 forms shown include the known transcript NM_001175 (i), 3 novel variants (ii–iv), and the known variant ARHGDIB-006 predicted in Ensembl (v). The grey boxes show novel alternative splicing forms in variant 6a (ii), 6b (iii), and 6c (iv). The † and * symbols indicate the locations of the start codon and the stop codon, respectively. The number of exons is shown on the white and grey boxes. Primer positions for RT-PCR and qRT-PCR are indicated by black and grey arrows, respectively.
Figure 2
Figure 2
Comparison of splicing events in normal tissues. The copy number of transcripts was estimated by determining the mean of the values obtained by qRT-PCR analysis performed in duplicate. The left and right panels show the expression patterns of normal ARHGDIB and variant 6a, respectively.
Figure 3
Figure 3
Expression analysis of ARHGDIB at the mRNA and protein levels in colon cancer cell lines. (A) The expression levels of known ARHGDIB transcripts and variant 6a transcripts were analysed by qRT-PCR. (B) Protein expression was confirmed by immunoblotting with the ARHGDIB-specific monoclonal antibody. Immunoblotting of tubulin, α 4a (TUBA4A) protein, was conducted as a positive control experiment. The colon cancer cell lines Colo741, DLD-1, and SW948 were examined as representative cancer cell lines whose expression profiles of variant 6a differs from that of the normal transcript. Data are expressed as mean ± SD values calculated from information obtained from an experiment repeated 4 times. Statistical significance (*p < 0.05 and **p < 0.01) was evaluated by Student’s t-test.
Figure 4
Figure 4
Stability of ARHGDIB variant 6a mRNA and normal ARHGDIB mRNA. SW948 cells were cultured without (A) or with (B) actinomycin D (ActD). Amplification of actin β (ACTB) was conducted as a positive control experiment. The expression levels of transcripts before addition of ActD are shown as 100%. Data are expressed as mean ± SD values calculated from information obtained from an experiment repeated 4 times. Statistical significance (**p < 0.01) was evaluated by Student’s t-test.

Similar articles

Cited by

References

    1. Becker KF, Atkinson MJ, Reich U, Becker I, Nekarda H, Siewert JR, Hofler H. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 1994;54:3845–3852. - PubMed
    1. Gayther SA, Barski P, Batley SJ, Li L, de Foy KA, Cohen SN, Ponder BA, Caldas C. Aberrant splicing of the TSG101 and FHIT genes occurs frequently in multiple malignancies and in normal tissues and mimics alterations previously described in tumours. Oncogene. 1997;15:2119–2126. doi: 10.1038/sj.onc.1201591. - DOI - PubMed
    1. Ge K, DuHadaway J, Du W, Herlyn M, Rodeck U, Prendergast GC. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proc Natl Acad Sci U S A. 1999;96:9689–9694. doi: 10.1073/pnas.96.17.9689. - DOI - PMC - PubMed
    1. Barbour AP, Reeder JA, Walsh MD, Fawcett J, Antalis TM, Gotley DC. Expression of the CD44v2-10 isoform confers a metastatic phenotype: importance of the heparan sulfate attachment site CD44v3. Cancer Res. 2003;63:887–892. - PubMed
    1. Faustino NA, Cooper TA. Pre-mRNA splicing and human disease. Genes Dev. 2003;17:419–437. doi: 10.1101/gad.1048803. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources