Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;197(2):103-13.
doi: 10.1159/000342921. Epub 2012 Dec 1.

Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization

Affiliations

Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization

Xiang Xu et al. Cells Tissues Organs. 2013.

Abstract

Stromal cell-derived factor-1 (SDF-1) is a potent chemokine for bone marrow-derived stromal stem cells (BMSCs) that express CXCR4, the receptor for SDF-1. SDF-1 is considered to play an important role in the trafficking of BMSCs. We investigated the contribution of SDF-1 to the recruitment of BMSCs to the wound area and its promotion of wound repair and neovascularization. BMSCs were pretreated with or without anti-CXCR4 blocking antibody and combined with CM-DiI label, and injected via the tail vein into mice with full-thickness skin wounds on the dorsum. Simultaneously, anti-SDF-1 antibody was injected into local wounds in another group of mice. The results show that blockade of CXCR4 on either infused BMSCs or SDF-1 in the host wounds (1) dramatically impaired the number of infused BMSCs being recruited to the injured tissue, (2) reduced the expression of growth factors involved in the repair of injured tissue such as vascular endothelial growth factor, basic fibroblast growth factor and transforming growth factor beta 1, (3) decreased the resultant neovascularization, and (4) retarded wound healing. Taken together, the findings indicate that the SDF-1/CXCR4 signal pathway facilitates wound healing through augmenting BMSC recruitment to wound tissues, responsive secretion of growth factors by BMSCs and neovascularization in the wound area.

PubMed Disclaimer

Publication types

Substances