Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jan-Feb;7(1):55-9.
doi: 10.4161/pri.23061. Epub 2012 Dec 3.

Prions, prionoids and pathogenic proteins in Alzheimer disease

Affiliations
Review

Prions, prionoids and pathogenic proteins in Alzheimer disease

Karen H Ashe et al. Prion. 2013 Jan-Feb.

Abstract

Like patients with prion disease, Alzheimer patients suffer from a fatal, progressive form of dementia. There is growing evidence that amyloid-β (Aβ) aggregates may be transmissible similar to prions, at least under extreme experimental conditions. However, unlike mice infected with prion protein (PrP) prions, those inoculated with Aβ do not die. The transmission of Aβ and PrP thus differs conspicuously in the neurological effects they induce in their hosts, the difference being no less than a matter of life and death. Far from being a mere academic nuance, this distinction between Aβ and PrP begs the crucial questions of what, exactly, controls prion toxicity and how prion toxicity relates to prion infectivity.

Keywords: Alzheimer’s disease; PrP; amyloid-β; pathogenic proteins; prionoids; prions; tau.

PubMed Disclaimer

Figures

None
Figure 1. Prions, prionoids and pathogenic proteins in neurodegenerative diseases. PrPSc is considered to be the transmissible agent of the prion causing scrapie, Creutzfeldt-Jakob disease and related spongiform encephalopathies. Nucleating fibrillar protein aggregates (“prionoids”) are found in many neurodegenerative diseases. With the exception of PrPSc, there is little evidence in mice or humans linking prionoids in the brain to the pathophysiological processes that cause the disorders connected with these proteins. Instead, accumulating data indicate that the brain dysfunction and neurological signs associated with these illnesses are caused by non-fibrillar variants of the parent proteins (*proteins). In the case of Aβ, brain dysfunction in mice and CSF tau abnormalities in humans are strongly associated with a soluble 56-kDa assembly, Aβ*. The existence of other Aβ* molecules has not been excluded. The *proteins need not be misfolded in the sense of adopting novel secondary structure, which invariably involves β-sheets. PolyQ/ataxin-1 is the best example. Distinguishing between prionoids and *proteins, and understanding how *proteins cause neurological illness, will advance our progress in treating these profoundly devastating and fatal disorders.
None
Figure 2. The cellular prion protein is absolutely required for the toxicity of infectious prions (A), implying that PrPSc exerts neurotoxicity by docking to PrPC (B). This toxicity may also be elicited by PrP variants occurring naturally, such as PrP carrying supernumerary octapeptide repeats (C), or experimentally constructed toxic variants such as PrP versions carrying deletions of the hinge region (D). It was recently discovered that prion infection results in a chain of events that ultimately quenches protein translation, but it remains to be seen whether the toxicity elicited by PrP mutants (Panels C and D) utilizes the same pathway.

References

    1. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:136–44. doi: 10.1126/science.6801762. - DOI - PubMed
    1. Basler K, Oesch B, Scott M, Westaway D, Wälchli M, Groth DF, et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell. 1986;46:417–28. doi: 10.1016/0092-8674(86)90662-8. - DOI - PubMed
    1. Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA, Schwarz RD, et al. Evidence for seeding of beta -amyloid by intracerebral infusion of Alzheimer brain extracts in beta -amyloid precursor protein-transgenic mice. J Neurosci. 2000;20:3606–11. - PMC - PubMed
    1. Gaspar RC, Villarreal SA, Bowles N, Hepler RW, Joyce JG, Shughrue PJ. Oligomers of beta-amyloid are sequestered into and seed new plaques in the brains of an AD mouse model. Exp Neurol. 2010;223:394–400. doi: 10.1016/j.expneurol.2009.09.001. - DOI - PubMed
    1. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science. 2006;313:1781–4. doi: 10.1126/science.1131864. - DOI - PubMed