Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;8(11):e1003054.
doi: 10.1371/journal.pgen.1003054. Epub 2012 Nov 29.

MIG-10 functions with ABI-1 to mediate the UNC-6 and SLT-1 axon guidance signaling pathways

Affiliations

MIG-10 functions with ABI-1 to mediate the UNC-6 and SLT-1 axon guidance signaling pathways

Yan Xu et al. PLoS Genet. 2012.

Abstract

Extracellular guidance cues steer axons towards their targets by eliciting morphological changes in the growth cone. A key part of this process is the asymmetric recruitment of the cytoplasmic scaffolding protein MIG-10 (lamellipodin). MIG-10 is thought to asymmetrically promote outgrowth by inducing actin polymerization. However, the mechanism that links MIG-10 to actin polymerization is not known. We have identified the actin regulatory protein ABI-1 as a partner for MIG-10 that can mediate its outgrowth-promoting activity. The SH3 domain of ABI-1 binds to MIG-10, and loss of function of either of these proteins causes similar axon guidance defects. Like MIG-10, ABI-1 functions in both the attractive UNC-6 (netrin) pathway and the repulsive SLT-1 (slit) pathway. Dosage sensitive genetic interactions indicate that MIG-10 functions with ABI-1 and WVE-1 to mediate axon guidance. Epistasis analysis reveals that ABI-1 and WVE-1 function downstream of MIG-10 to mediate its outgrowth-promoting activity. Moreover, experiments with cultured mammalian cells suggest that the interaction between MIG-10 and ABI-1 mediates a conserved mechanism that promotes formation of lamellipodia. Together, these observations suggest that MIG-10 interacts with ABI-1 and WVE-1 to mediate the UNC-6 and SLT-1 guidance pathways.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. MIG-10 interacts physically with ABI-1.
(A) Diagram of the RNAi screening strategy used to identify ABI-1. A sublibrary of RNAi clones encoding proline-binding domains (SH3, WW, EVH1) was created. Each clone was screened for the ability to phenocopy the HSN ventral guidance defect observed in mig-10 loss of function mutants. This strategy led to the identification of ABI-1 as a potential interaction partner for MIG-10. In this study we have utilized the abi-1(tm494) allele, which is predicted to truncate the ABI-1 protein as indicated by the bracket. (B) Example of HSN axon in wild-type animals. The axon makes a direct ventral migration. (C) Example of HSN ventral guidance defect observed in mig-10(RNAi) animals. The axon migrates laterally prior to turning ventrally. (D) Example of HSN ventral guidance defect observed in abi-1(RNAi) animals. The HSN axon was observed with an unc-86::myrGFP transgene. Arrowheads mark approximate position of the vulva. Note that the migration of the HSN cell body was also affected by mig-10(RNAi) and abi-1(RNAi). However, previous analysis has indicated that HSN axon guidance defects are not secondary consequences of defects in cell body migration , . Scale bars represent 5 µm. (E) MIG-10 binds to the SH3 domain of ABI-1. MIG-10::GFP was incubated with the SH3 domain of ABI-1 fused to GST (GST::ABI-1-SH3) or GST as a control. Bound material was detected by western blotting with an antibody to GFP. For reference, an amount equivalent to 5% of the MIG-10::GFP starting material was run on a gel (5% SM).
Figure 2
Figure 2. ABI-1 is involved in both UNC-6 and SLT-1 signaling pathways.
(A) Example of AVM neuron with normal ventral guidance. (B) Example of AVM neuron with defective ventral guidance. (C–D) Genetic interactions between unc-6 and abi-1 as well as between slt-1 and abi-1 in the AVM (C) and PVM (D), indicate that ABI-1 functions in both the UNC-6 and SLT-1 signaling pathways. (E) Loss of abi-1 function does not enhance defects in the unc-6; slt-1 mutant background. (F) ABI-1 functions cell autonomously to mediate axon guidance. A mec-4::abi-1 transgene suppresses PVM ventral axon guidance defects in slt-1; abi-1 double mutants. mec-4::abi-1(−) represents animals that have lost the mec-4::abi-1 transgene during mitosis. These animals serve as controls and were scored simultaneously on the same slides as the mec-4::abi-1(+) animals, which carry the transgene. Data was combined from 2 independently derived transgenic lines, cueEx1 and cueEx2, which showed similar results. (G) The abi-1(tm494) loss of function mutation suppresses guidance defects in AVM neurons overexpressing UNC-40. Scale bars are 5 µM. Error bars represent standard error of the proportion. Brackets indicate statistically significant difference, Z test for proportions (*p<0.05, **p<0.005). The AVM axon was visualized with the zdIs5 transgene (mec-4::gfp). Scale bars are 10 µM. Alleles used were unc-6(ev400) null, slt-1(eh15) null, and abi-1(tm494) loss of function.
Figure 3
Figure 3. Dosage-sensitive genetic interactions indicate that MIG-10, ABI-1, and WVE-1 function together to mediate axon guidance.
(A) Transheterozygous genetic interaction between abi-1(tm494) and mig-10(ct41). HSN ventral guidance in animals heterozygous for either abi-1(tm494) or mig-10(ct41) was comparable to those in wild-type animals. Animals transheterozygous for abi-1(tm494) and mig-10(ct41) had significantly greater ventral guidance errors compared to wild-type animals. Heterozygous animals were constructed by crossing unc-86::myrgfp males with abi-1(tm494) or mig-10(ct41) hermaphrodites and scoring F1 cross progeny. Transheterozygous animals were constructed by crossing abi-1(tm494); unc-86::myrgfp males with mig-10(ct41) hermaphrodites and scoring F1 cross progeny. (B) Transheterozygous genetic interaction between wve-1(ok3308) and mig-10(ct41). HSN ventral guidance was comparable to wild-type in animals heterozygous for wve-1(ok3308) or mig-10(ct41). HSN ventral guidance in animals heterozygous for either wve-1(ok3308) or mig-10(ct41) was comparable to those in wild-type animals. Animals transheterozygous for wve-1(ok3308) and mig-10(ct41) had significantly greater ventral guidance errors compared to wild-type animals. Similar results were obtained using the wve-1(ne350) allele instead of the wve-1(ok3308) allele. The hT2 balancer covers both wve-1 and mig-10 and was used to construct wve-1 heterozygotes, mig-10 heterozygotes, and the wve-1; mig-10 transheterozygotes. The kyIs262 transgene (unc-86::myrgfp) was used for observing the HSN axon. For the labels in both (A) and (B), “het.” means heterozygous for the mutant or for the unc-86::myrgfp transgene. Whereas, “+” means homozygous for the wild-type gene or homozygous for the unc-86::myrgfp transgene. Brackets indicate statistically significant difference between transheterozygotes and single heterozygotes, Z test for proportions (*p<0.0005).
Figure 4
Figure 4. ABI-1 and WVE-1 mediate outgrowth-promoting activity downstream of MIG-10.
(A) Example of normal ALM neuron with a single anterior axon. (B) Example of ALM multipolar defect caused by transgenic expression of MIG-10A by the mec-4::mig-10a transgene. (C) Loss of function mutations abi-1(tm494) and wve-1(ok3308) suppress MIG-10 transgenic expression phenotype. The max-2(nv162) mutation, a likely null, does not suppress the MIG-10 transgenic expression phenotype. The wve-1(ok3308) mutants were maternally rescued. The AVM axon was visualized with a zdIs5 transgene (mec-4::gfp). (D) The abi-1(tm494) loss of function mutation suppresses the AVM multipolar phenotype that results from transgenic expression of MIG-10 in the unc-6; slt-1 double null mutant background. *Statistically significant difference compared to wild-type or unc-6; slt-1 double mutant, z-test for proportions (p<0.005).
Figure 5
Figure 5. ABI-1 mediates the lamellipodia-forming activity of MIG-10 in cultured HEK293 cells.
(A) Example of cell transfected with GFP and control shRNA. (B) Example of cell transfected with MIG-10::GFP and control shRNA. (C) Example of cell transfected with MIG-10::GFP and Abi1 shRNA. (D) Knockdown of Abi1 suppresses the lamellipodia-forming activity of MIG-10. Graph shows the average cell perimeter with lamellipodia. “Ctr.” means cells transfected with scrambled control shRNA. “−” means cells were not transfected with any shRNA. “Abi1” means cells were transfected with the PAV197 shRNA against Abi1. Error bars represent the standard error of the mean. *Bracket indicates statistically significant difference, t-test (p<0.0001). Scale bars are 5 µm.

References

    1. Lai Wing Sun K, Correia JP, Kennedy TE (2011) Netrins: versatile extracellular cues with diverse functions. Development 138: 2153–2169. - PubMed
    1. Kolodkin AL, Tessier-Lavigne M (2010) Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb Perspect Biol 3. - PMC - PubMed
    1. Raper J, Mason C (2010) Cellular strategies of axonal pathfinding. Cold Spring Harb Perspect Biol 2: a001933. - PMC - PubMed
    1. Chedotal A, Richards LJ (2010) Wiring the brain: the biology of neuronal guidance. Cold Spring Harb Perspect Biol 2: a001917. - PMC - PubMed
    1. O'Donnell M, Chance RK, Bashaw GJ (2009) Axon growth and guidance: receptor regulation and signal transduction. Annu Rev Neurosci 32: 383–412. - PMC - PubMed

Publication types

MeSH terms