Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(11):e50133.
doi: 10.1371/journal.pone.0050133. Epub 2012 Nov 28.

Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses

Affiliations

Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses

C Anela Choy et al. PLoS One. 2012.

Abstract

The δ(15)N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ(15)N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ(15)N values. Regional differences in the δ(15)N values of phenylalanine confirmed that bulk tissue δ(15)N values reflect region-specific water mass biogeochemistry controlling δ(15)N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ∼2.9) largely align with expectations from stomach content studies (TP ∼3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ∼3.2) were lower than TPs derived from stomach content studies (TP∼4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Map of sample collection locations.
Approximate capture locations for species of lanternfish (closed symbols) and dragonfish (open symbols) specimens analyzed in this study, from five distinct and globally distributed regions (Tasman Sea (TAS), California Current (CA), Gulf of Mexico (GOM), Hawaii (HI), and the Mid-Atlantic Ridge (MAR)).
Figure 2
Figure 2. Influence of regional biogeochemistry on consumer isotopic composition.
Relationship between δ15N values of phenylalanine (δ15Nphe) (‰) and bulk white muscle tissue (δ15Nbulk) (‰) in 33 specimens of mesopelagic lanternfishes (empty symbols) and dragonfishes (filled symbols) from offshore waters of the Tasman Sea (TAS), California Current (CA), Gulf of Mexico (GOM), Hawaii (HI), and the Mid-Atlantic Ridge (MAR). Error bars are standard deviations. δ15Nphe and δ15Nbulk values in fishes across all regions are significantly positively correlated (p<0.05, r2 = 0.58; y = 0.75× –7.14).
Figure 3
Figure 3. Uniform amino acid based trophic positions for lanternfishes and dragonfishes.
Relationship between fish length (mm) and amino acid CSIA estimated trophic positions of a) individual lanternfishes, and b) individual dragonfishes from five regions. Also shown is the relationship between individual fish bulk tissue δ15N values (‰) and amino acid CSIA estimated trophic positions of c) lanternfishes and d) dragonfishes from five regions. Error bars indicate propagated error from trophic position calculation (see methods).

References

    1. Sibert J, Hampton J, Kleiber P, Maunder M (2006) Biomass, size, and trophic status of top predators in the Pacific Ocean. Science 314: 1773–1776. - PubMed
    1. Pauly D, Christensen V, Dalsgaard J, Froese R, Torres Jr F (1998) Fishing down marine food webs. Science 279: 860–863. - PubMed
    1. Casini M, Hjelm J, Molinero J, Lovgren J, Cardinale M, et al. (2009) Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proc Natl Acad Sci U S A 106: 197–202. - PMC - PubMed
    1. Brodeur RD, Yamamura O [eds.] (2005) Micronekton of the North Pacific. PICES Science Report No. 30. North Pacific Marine Science Organization, Sidney, BC.
    1. De Forest L, Drazen J (2009) The influence of a Hawaiian seamount on mesopelagic micronekton. Deep-Sea Res, Part I 56: 232–250.

Publication types