Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(11):e50181.
doi: 10.1371/journal.pone.0050181. Epub 2012 Nov 29.

Effect of the Gas6 c.834+7G>A polymorphism and the interaction of known risk factors on AMD pathogenesis in Hungarian patients

Affiliations

Effect of the Gas6 c.834+7G>A polymorphism and the interaction of known risk factors on AMD pathogenesis in Hungarian patients

Gergely Losonczy et al. PLoS One. 2012.

Abstract

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly in the developed world. Numerous genetic factors contribute to the development of the multifactorial disease. We performed a case-control study to assess the risk conferred by known and candidate genetic polymorphisms on the development of AMD. We searched for genetic interactions and for differences in dry and wet AMD etiology. We enrolled 213 patients with exudative, 67 patients with dry AMD and 106 age and ethnically matched controls. Altogether 12 polymorphisms in Apolipoprotein E, complement factor H, complement factor I, complement component 3, blood coagulation factor XIII, HTRA1, LOC387715, Gas6 and MerTK genes were tested. No association was found between either the exudative or the dry form and the polymorphisms in the Apolipoprotein E, complement factor I, FXIII and MerTK genes. Gas6 c.834+7G>A polymorphism was found to be significantly protective irrespective of other genotypes, reducing the odds of wet type AMD by a half (OR = 0.50, 95%CI: 0.26-0.97, p = 0.04). Multiple regression models revealed an interesting genetic interaction in the dry AMD subgroup. In the absence of C3 risk allele, mutant genotypes of both CFH and HTRA1 behaved as strongly significant risk factors (OR = 7.96, 95%CI: 2.39 = 26.50, p = 0.0007, and OR = 36.02, 95%CI: 3.30-393.02, p = 0.0033, respectively), but reduced to neutrality otherwise. The risk allele of C3 was observed to carry a significant risk in the simultaneous absence of homozygous CFH and HTRA1 polymorphisms only, in which case it was associated with a near-five-fold relative increase in the odds of dry type AMD (OR = 4.93, 95%CI: 1.98-12.25, p = 0.0006). Our results suggest a protective role of Gas6 c.834+7G>A polymorphism in exudative AMD development. In addition, novel genetic interactions were revealed between CFH, HTRA1 and C3 polymorphisms that might contribute to the pathogenesis of dry AMD.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. The effect of GAS6 c.834+7G>A polymorphism and genetic interactions on the risk of AMD.
Polymorphisms with the compared genotypes are shown on the left side. Stratum of subjects involved in the corresponding analysis are on the vertical axis. Figures above markers indicate number of observations for the given stratum Adjusted odds ratios and 95% confidence intervals are represented by dots and lines, respectively. In the dry AMD group the effect of C3 polymorphism in case of double CFH/HTRA1 homozygousity could not be estimated due to low observation number. GAS6 was not included as an explanatory variable in the model for dry AMD.

Similar articles

Cited by

References

    1. Klein R, Peto T, Bird A, Vannewkirk MR (2004) The epidemiology of age-related macular degeneration. Am J Ophthalmol 137: 486–495. - PubMed
    1. Friedman DS, Katz J, Bressler NM, Rahmani B, Tielsch JM (1999) Racial differences in the prevalence of age-related macular degeneration: the Baltimore Eye Survey. Ophthalmology 106: 1049–1055. - PubMed
    1. Friedman DS, O'Colmain BJ, Munoz B, Tomany SC, McCarty C, et al. (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122: 564–572. - PubMed
    1. Seddon JM, Sharma S, Adelman RA (2006) Evaluation of the clinical age-related maculopathy staging system. Ophthalmology 113: 260–266. - PubMed
    1. Coleman HR, Chan CC, Ferris FL 3rd, Chew EY (2008) Age-related macular degeneration. Lancet 372: 1835–1845. - PMC - PubMed

Publication types

Substances