Poly(N-vinylpyrrolidone)-modified surfaces for biomedical applications
- PMID: 23212975
- DOI: 10.1002/mabi.201200269
Poly(N-vinylpyrrolidone)-modified surfaces for biomedical applications
Abstract
Poly(N-vinylpyrrolidone) (PVP), an important water soluble synthetic polymer, has many desirable properties including low toxicity, chemical stability, and good biocompatibility. Since PVP is hemocompatible and physiologically inactive, it has been used as a blood plasma substitute. Surface modification with PVP has been investigated extensively over the past few years as a means of preventing nonspecific protein adsorption. PVP may therefore be seen as a promising antifouling surface modifier comparable to poly(ethylene glycol) (PEG). In this review, various approaches for the design and preparation of PVP-modified surfaces are summarized and potential biomedical applications of these PVP-modified materials are indicated. Finally, some perspectives on future research on PVP for surface modification are discussed.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Poly(vinylpyrrolidone) for bioconjugation and surface ligand immobilization.Biomacromolecules. 2007 Sep;8(9):2950-3. doi: 10.1021/bm700498j. Epub 2007 Aug 23. Biomacromolecules. 2007. PMID: 17715962
-
Facile synthesis of thermally stable poly(N-vinylpyrrolidone)-modified gold surfaces by surface-initiated atom transfer radical polymerization.Langmuir. 2012 Jun 26;28(25):9451-9. doi: 10.1021/la300728j. Epub 2012 Jun 6. Langmuir. 2012. PMID: 22621226
-
Interaction between water and poly(vinylpyrrolidone) containing polyethylene glycol.J Pharm Sci. 1999 Nov;88(11):1228-33. J Pharm Sci. 1999. PMID: 10564074
-
Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges.Biotechnol Adv. 2019 Jan-Feb;37(1):109-131. doi: 10.1016/j.biotechadv.2018.11.008. Epub 2018 Nov 22. Biotechnol Adv. 2019. PMID: 30472307 Review.
-
Clarification of the blood compatibility mechanism by controlling the water structure at the blood-poly(meth)acrylate interface.J Biomater Sci Polym Ed. 2010;21(14):1849-63. doi: 10.1163/092050610X517220. Epub 2010 Aug 6. J Biomater Sci Polym Ed. 2010. PMID: 20699056 Review.
Cited by
-
Recent Advances in the Synthesis of Complex Macromolecular Architectures Based on Poly(N-vinyl pyrrolidone) and the RAFT Polymerization Technique.Polymers (Basel). 2022 Feb 11;14(4):701. doi: 10.3390/polym14040701. Polymers (Basel). 2022. PMID: 35215614 Free PMC article. Review.
-
Functional Nanofibrous Biomaterials of Tailored Structures for Drug Delivery-A Critical Review.Pharmaceutics. 2020 Jun 8;12(6):522. doi: 10.3390/pharmaceutics12060522. Pharmaceutics. 2020. PMID: 32521627 Free PMC article. Review.
-
Selective inhibitory effects of 50-nm gold nanoparticles on mouse macrophage and spleen cells.J Immunotoxicol. 2016;13(2):198-208. doi: 10.3109/1547691X.2015.1035819. Epub 2015 Apr 15. J Immunotoxicol. 2016. PMID: 25875326 Free PMC article.
-
Polyvinylpyrrolidone Nanofibers Incorporating Mesoporous Bioactive Glass for Bone Tissue Engineering.Biomimetics (Basel). 2023 May 17;8(2):206. doi: 10.3390/biomimetics8020206. Biomimetics (Basel). 2023. PMID: 37218792 Free PMC article.
-
Size Control of (99m)Tc-tin Colloid Using PVP and Buffer Solution for Sentinel Lymph Node Detection.J Korean Med Sci. 2015 Jun;30(6):816-22. doi: 10.3346/jkms.2015.30.6.816. Epub 2015 May 13. J Korean Med Sci. 2015. PMID: 26028937 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous