Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec:1276:1-25.
doi: 10.1111/j.1749-6632.2012.06820.x. Epub 2012 Dec 7.

Dissecting signaling and functions of adhesion G protein-coupled receptors

Affiliations

Dissecting signaling and functions of adhesion G protein-coupled receptors

Demet Araç et al. Ann N Y Acad Sci. 2012 Dec.

Abstract

G protein-coupled receptors (GPCRs) comprise an expanded superfamily of receptors in the human genome. Adhesion class G protein-coupled receptors (adhesion-GPCRs) form the second largest class of GPCRs. Despite the abundance, size, molecular structure, and functions in facilitating cell and matrix contacts in a variety of organ systems, adhesion-GPCRs are by far the most poorly understood GPCR class. Adhesion-GPCRs possess a unique molecular structure, with extended N-termini containing various adhesion domains. In addition, many adhesion-GPCRs are autoproteolytically cleaved into an N-terminal fragment (NTF, NT, α-subunit) and C-terminal fragment (CTF, CT, β-subunit) at a conserved GPCR autoproteolysis-inducing (GAIN) domain that contains a GPCR proteolysis site (GPS). These two features distinguish adhesion-GPCRs from other GPCR classes. Though active research on adhesion-GPCRs in diverse areas, such as immunity, neuroscience, and development and tumor biology has been intensified in the recent years, the general biological and pharmacological properties of adhesion-GPCRs are not well known, and they have not yet been used for biomedical purposes. The "6th International Adhesion-GPCR Workshop," held at the Institute of Physiology of the University of Würzburg on September 6-8, 2012, assembled a majority of the investigators currently actively pursuing research on adhesion-GPCRs, including scientists from laboratories in Europe, the United States, and Asia. The meeting featured the nascent mechanistic understanding of the molecular events driving the signal transduction of adhesion-GPCRs, novel models to evaluate their functions, and evidence for their involvement in human disease.

PubMed Disclaimer

Publication types

LinkOut - more resources