Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Mar-Apr;89(2):259-73.
doi: 10.1111/php.12029. Epub 2013 Jan 25.

Solid-state NMR spectroscopy to probe photoactivation in canonical phytochromes

Affiliations
Review

Solid-state NMR spectroscopy to probe photoactivation in canonical phytochromes

Chen Song et al. Photochem Photobiol. 2013 Mar-Apr.

Abstract

The photoreceptor phytochrome switches photochromically between two thermally stable states called Pr and Pfr. Here, we summarize recent solid-state magic-angle spinning (MAS) NMR work on this conversion process and interpret the functional mechanism in terms of a nano-machine. The process is initiated by a double-bond photoisomerization of the open-chain tetrapyrrole chromophore at the methine bridge connecting pyrrole rings C and D. The Pr-state chromophore and its surrounding pocket in canonical cyanobacterial and plant phytochromes has significantly less order, tends to form isoforms and is soft. Conversely, Pfr shows significantly harder chromophore-protein interactions, a well-defined protonic and charge distribution with a clear classical counterion for the positively charged tetrapyrrole system. The soft-to-hard/disorder-to-order transition involves the chromophore and its protein surroundings within a sphere of at least 5.5 Å. The relevance of this collective event for signaling is discussed. Measurement of the intermediates during the Pfr → Pr back-reaction provides insight into the well-adjusted mechanics of a two-step transformation. As both Pr → Pfr and Pfr → Pr reaction pathways are different in ground and excited states, a photochemically controlled hyper-landscape is proposed allowing for ratchet-type reaction dynamics regulating signaling activity.

PubMed Disclaimer

Publication types

LinkOut - more resources