A genome-wide methylation study of severe vitamin D deficiency in African American adolescents
- PMID: 23219444
- PMCID: PMC3935318
- DOI: 10.1016/j.jpeds.2012.10.059
A genome-wide methylation study of severe vitamin D deficiency in African American adolescents
Abstract
Objectives: To test the hypothesis that changes in DNA methylation are involved in vitamin D deficiency-related immune cell regulation using an unbiased genome-wide approach combined with a genomic and epigenomic integrative approach.
Study design: We performed a genome-wide methylation scan using the Illumina HumanMethylation 27 BeadChip on leukocyte DNA of 11 cases of vitamin D deficiency (serum 25-hydroxyvitamin D [25(OH)D] ≤ 25 nmol/L) and 11 age-matched controls ([25(OH)D] > 75 nmol/L); the subjects were African American normal-weight (body mass index <85th percentile) males aged 14-19 years. The Limma package was used to analyze each CpG site for differential methylation between cases and controls. To correct for multiple testing, the set of raw P values were converted to false discovery rates (FDRs). We also compared our findings with the recent data from Genome-Wide Association Studies of circulating 25(OH)D levels and then performed a permutation test to examine whether the "double hit" genes were randomly enriched.
Results: A total of 79 CpG sites achieved raw P < .001. Of the 79 CpG sites, 2 CpG sites survived multiple testing: cg16317961 (raw P = 3.5 × 10(-6), FDR = 0.078, in MAPRE2) and cg04623955 (raw P = 5.9 × 10(-6), FDR = 0.078, in DIO3). Furthermore, 3 out of the 4 genes previously identified in the 2 Genome-Wide Association Studies were also significant at the methylation level (DHCR7: cg07487535, P = .015 and cg10763288, P = .017; CYP2R1: cg25454890, P = .040; CYP24A1: cg18956481, P = .022), reflecting significant enrichment (P = .0098).
Conclusion: Severe vitamin D deficiency is associated with methylation changes in leukocyte DNA. The genomic and epigenomic approach reinforce the crucial roles played by the DHCR7, CYP2R1, and CYP24A1 genes in vitamin D metabolism.
Copyright © 2013 Mosby, Inc. All rights reserved.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
References
-
- Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys. 2000;374:334–8. - PubMed
-
- Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81. - PubMed
-
- Lee JH, O'Keefe JH, Bell D, Hensrud DD, Holick MF. Vitamin D deficiency an important, common, and easily treatable cardiovascular risk factor? J Am Coll Cardiol. 2008;52:1949–56. - PubMed
-
- Ganji V, Zhang X, Shaikh N, Tangpricha V. Serum 25-hydroxyvitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25-hydroxyvitamin D data from NHANES 2001-2006. Am J Clin Nutr. 2011;94:225–33. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
