Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Apr;278(1):65-72.
doi: 10.1016/0003-9861(90)90232-n.

Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes

Affiliations
Comparative Study

Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes

C J Bolter et al. Arch Biochem Biophys. 1990 Apr.

Abstract

The fumigant insecticide phosphine (PH3) is known to inhibit cytochrome c oxidase in vitro. Inhibition of the respiratory chain at this site has been shown to stimulate the generation of superoxide radicals (O2-), which dismutate to form hydrogen peroxide (H2O2). This study was performed in order to investigate the production of H2O2 by mitochondria isolated from granary weevil (Sitophilus granarius) and mouse liver on exposure to PH3. Other respiratory inhibitors, antimycin, myxothiazol, and rotenone were used with insect mitochondria. Hydrogen peroxide was measured spectrophotometrically using yeast cytochrome c peroxidase as an indicator. Insect and mouse liver mitochondria, utilizing endogenous substrate, both produced H2O2 after inhibition by PH3. Insect organelles released threefold more H2O2 than did mouse organelles, when exposed to PH3. Production of H2O2 by PH3-treated insect mitochondria was increased significantly on addition of the substrate alpha-glycerophosphate. Succinate did not enhance H2O2 production, however, indicating that the H2O2 did not result from the autoxidation of ubiquinone. NAD(+)-linked substrates, malate and pyruvate also had no effect on H2O2 production, suggesting that NADH-dehydrogenase was not the source of H2O2. Data obtained using antimycin and myxothiazol, both of which stimulated the release of H2O2 from insect mitochondria, lead to the conclusion that glycerophosphate dehydrogenase is a source of H2O2. The effect of combining PH3, antimycin, and myxothiazol on cytochrome spectra in insect mitochondria was also recorded. It was observed that PH3 reduces cytochrome c oxidase but none of the other cytochromes in the electron transport chain. There was no movement of electrons to cytochrome b when insect mitochondria are inhibited with PH3. The spectral data show that the inhibitors interact with the respiratory chain in a way that would allow the production of H2O2 from the sites proposed previously.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources