Small molecule ligands for enhanced intracellular delivery of lipid nanoparticle formulations of siRNA
- PMID: 23219877
- DOI: 10.1016/j.nano.2012.11.006
Small molecule ligands for enhanced intracellular delivery of lipid nanoparticle formulations of siRNA
Abstract
Gene silencing activity of lipid nanoparticle (LNP) formulations of siRNA requires LNP surface factors promoting cellular uptake. This study aimed to identify small molecules that enhance cellular uptake of LNP siRNA systems, then use them as LNP-associated ligands to improve gene silencing potency. Screening the Canadian Chemical Biology Network molecules for effects on LNP uptake into HeLa cells found that cardiac glycosides like ouabain and strophanthidin caused the highest uptake. Cardiac glycosides stimulate endocytosis on binding to plasma membrane Na(+)/K(+) ATPase found in all mammalian cells, offering the potential to stimulate LNP uptake into various cell types. A PEG-lipid containing strophanthidin at the end of PEG (STR-PEG-lipid) was synthesized and incorporated into LNP. Compared to non-liganded systems, STR-PEG-lipid enhanced LNP uptake in various cell types. Furthermore, this enhanced uptake improved marker gene silencing in vitro. Addition of STR-PEG-lipid to LNP siRNA may have general utility for enhancing gene silencing potency.
From the clinical editor: In this study, the authors identified small molecules that enhance cellular uptake of lipid nanoparticle siRNA systems, then used them as LNP-associated ligands to improve gene silencing potency.
Copyright © 2013 Elsevier Inc. All rights reserved.
Similar articles
-
Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration.J Control Release. 2014 Dec 28;196:106-12. doi: 10.1016/j.jconrel.2014.09.025. Epub 2014 Oct 5. J Control Release. 2014. PMID: 25285610
-
Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA.J Control Release. 2016 Aug 10;235:236-244. doi: 10.1016/j.jconrel.2016.05.059. Epub 2016 May 26. J Control Release. 2016. PMID: 27238441
-
Improved Stability of siRNA-Loaded Lipid Nanoparticles Prepared with a PEG-Monoacyl Fatty Acid Facilitates Ligand-Mediated siRNA Delivery.Mol Pharm. 2020 Apr 6;17(4):1397-1404. doi: 10.1021/acs.molpharmaceut.0c00087. Epub 2020 Mar 2. Mol Pharm. 2020. PMID: 32091909
-
Lipid nanoparticles for short interfering RNA delivery.Adv Genet. 2014;88:71-110. doi: 10.1016/B978-0-12-800148-6.00004-3. Adv Genet. 2014. PMID: 25409604 Free PMC article. Review.
-
Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.Acc Chem Res. 2019 Sep 17;52(9):2435-2444. doi: 10.1021/acs.accounts.9b00368. Epub 2019 Aug 9. Acc Chem Res. 2019. PMID: 31397996 Review.
Cited by
-
A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo.Mol Ther Nucleic Acids. 2016;5(8):e348. doi: 10.1038/mtna.2016.43. Mol Ther Nucleic Acids. 2016. PMID: 28131285 Free PMC article.
-
Advances in Lipid Nanoparticles for siRNA Delivery.Pharmaceutics. 2013 Sep 18;5(3):498-507. doi: 10.3390/pharmaceutics5030498. Pharmaceutics. 2013. PMID: 24300520 Free PMC article.
-
Advances in oligonucleotide drug delivery.Nat Rev Drug Discov. 2020 Oct;19(10):673-694. doi: 10.1038/s41573-020-0075-7. Epub 2020 Aug 11. Nat Rev Drug Discov. 2020. PMID: 32782413 Free PMC article. Review.
-
Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components.Mol Pharm. 2022 Jun 6;19(6):1669-1686. doi: 10.1021/acs.molpharmaceut.1c00916. Epub 2022 May 20. Mol Pharm. 2022. PMID: 35594500 Free PMC article. Review.
-
Lipid Nanoparticle Delivery Systems to Enable mRNA-Based Therapeutics.Pharmaceutics. 2022 Feb 11;14(2):398. doi: 10.3390/pharmaceutics14020398. Pharmaceutics. 2022. PMID: 35214130 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources