Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013:961:329-43.
doi: 10.1007/978-1-4614-4756-6_28.

New insights into the contribution of arterial NCX to the regulation of myogenic tone and blood pressure

Affiliations
Review

New insights into the contribution of arterial NCX to the regulation of myogenic tone and blood pressure

Jin Zhang. Adv Exp Med Biol. 2013.

Abstract

Plasma membrane protein Na(+)/Ca(2+) exchanger (NCX) in vascular smooth muscle (VSM) cells plays an important role in intracellular Ca(2+) homeostasis, Ca(2+) signaling, and arterial contractility. Recent evidence in intact animals reveals that VSM NCX type 1 (NCX1) is importantly involved in the control of arterial blood pressure (BP) in the normal state and in hypertension. Increased expression of vascular NCX1 has been implicated in human primary pulmonary hypertension and several salt-dependent hypertensive animal models. Our aim is to determine the molecular and physiological mechanisms by which vascular NCX influences vasoconstriction and BP normally and in salt-dependent hypertension. Here, we describe the relative contribution of VSM NCX1 to Ca(2+) signaling and arterial contraction, including recent data from transgenic mice (NCX1(smTg/Tg), overexpressors; NCX1(sm-/-), knockouts) that has begun to elucidate the specific contributions of NCX to BP regulation. Arterial contraction and BP correlate with the level of NCX1 expression in smooth muscle: NCX1(sm-/-) mice have decreased arterial myogenic tone (MT), vasoconstriction, and low BP. NCX1(smTg/Tg) mice have high BP and are more sensitive to salt; their arteries exhibit upregulated transient receptor potential canonical channel 6 (TRPC6) protein, increased MT, and vasoconstriction. These observations suggest that NCX is a key component of certain distinct signaling pathways that activate VSM contraction in response to stretch (i.e., myogenic response) and to activation of certain G-protein-coupled receptors. Arterial NCX expression and mechanisms that control the local (sub-plasma membrane) Na(+) gradient, including cation-selective receptor-operated channels containing TRPC6, regulate arterial Ca(2+) and constriction, and thus BP.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources