Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May;98(5 Pt 1):1148-54.
doi: 10.1016/0016-5085(90)90327-w.

Effects of stimulation of vesical afferents on colonic motility in cats

Affiliations

Effects of stimulation of vesical afferents on colonic motility in cats

M Bouvier et al. Gastroenterology. 1990 May.

Abstract

The effects of distension and isovolumetric contraction of urinary bladder on colonic motility were studied in anesthetized cats. Distension and contraction of the urinary bladder induced an inhibition of spontaneous colonic electromyographic activity and a decrease in the amplitudes of the excitatory junction potentials evoked in the colon by stimulation of the distal end of the parasympathetic nerve fibers. This inhibition was blocked by guanethidine and phentolamine. Reversely, vesical emptying resulted in an increase in colonic motility, abolished by atropine, and an increase in the amplitude of the excitatory junction potentials. Both excitatory and inhibitory reflexes disappeared after hexamethonium. The inhibitory effects of bladder distension were abolished by bilateral section of the lumbar ventral or dorsal spinal roots and after bilateral section of the lumbar colonic or hypogastric nerves. These results indicate (a) that the vesical afferents responsible for the inhibitory and excitatory reflexes run in the hypogastric and pelvic nerves respectively and (b) that the inhibitory and excitatory effects are caused by the activation of sympathetic and parasympathetic efferent nerve fibers, respectively. The supraspinal nervous structures were not implicated in these reflexes because they persisted in spinal cats.

PubMed Disclaimer

MeSH terms

LinkOut - more resources