Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 13;492(7428):256-60.
doi: 10.1038/nature11651. Epub 2012 Oct 15.

A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens

Affiliations

A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens

Shiming Liu et al. Nature. .

Abstract

Soybean (Glycine max (L.) Merr.) is an important crop that provides a sustainable source of protein and oil worldwide. Soybean cyst nematode (Heterodera glycines Ichinohe) is a microscopic roundworm that feeds on the roots of soybean and is a major constraint to soybean production. This nematode causes more than US$1 billion in yield losses annually in the United States alone, making it the most economically important pathogen on soybean. Although planting of resistant cultivars forms the core management strategy for this pathogen, nothing is known about the nature of resistance. Moreover, the increase in virulent populations of this parasite on most known resistance sources necessitates the development of novel approaches for control. Here we report the map-based cloning of a gene at the Rhg4 (for resistance to Heterodera glycines 4) locus, a major quantitative trait locus contributing to resistance to this pathogen. Mutation analysis, gene silencing and transgenic complementation confirm that the gene confers resistance. The gene encodes a serine hydroxymethyltransferase, an enzyme that is ubiquitous in nature and structurally conserved across kingdoms. The enzyme is responsible for interconversion of serine and glycine and is essential for cellular one-carbon metabolism. Alleles of Rhg4 conferring resistance or susceptibility differ by two genetic polymorphisms that alter a key regulatory property of the enzyme. Our discovery reveals an unprecedented plant resistance mechanism against a pathogen. The mechanistic knowledge of the resistance gene can be readily exploited to improve nematode resistance of soybean, an increasingly important global crop.

PubMed Disclaimer

References

    1. BMC Plant Biol. 2008 Jan 24;8:9 - PubMed
    1. Brain Res. 2008 Oct 27;1237:44-51 - PubMed
    1. J Mol Biol. 1993 Dec 5;234(3):779-815 - PubMed
    1. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16666-71 - PubMed
    1. Blood. 2002 May 15;99(10):3786-91 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources