Dual inhibition of Bcl-2 and Bcl-xL strikingly enhances PI3K inhibition-induced apoptosis in human myeloid leukemia cells through a GSK3- and Bim-dependent mechanism
- PMID: 23243017
- PMCID: PMC3578060
- DOI: 10.1158/0008-5472.CAN-12-1365
Dual inhibition of Bcl-2 and Bcl-xL strikingly enhances PI3K inhibition-induced apoptosis in human myeloid leukemia cells through a GSK3- and Bim-dependent mechanism
Abstract
Effects of concomitant inhibition of the PI3K/AKT/mTOR pathway and Bcl-2/Bcl-xL (BCL2L1) were examined in human myeloid leukemia cells. Tetracycline-inducible Bcl-2 and Bcl-xL dual knockdown sharply increased PI3K/AKT/mTOR inhibitor lethality. Conversely, inducible knockdown or dominant-negative AKT increased, whereas constitutively active AKT reduced lethality of the Bcl-2/Bcl-xL inhibitor ABT-737. Furthermore, PI3K/mTOR inhibitors (e.g., BEZ235 and PI-103) synergistically increased ABT-737-mediated cell death in multiple leukemia cell lines and reduced colony formation in leukemic, but not normal, CD34+ cells. Notably, increased lethality was observed in four of six primary acute myelogenous leukemia (AML) specimens. Responding, but not nonresponding, samples exhibited basal AKT phosphorylation. PI3K/mTOR inhibitors markedly downregulated Mcl-1 but increased Bim binding to Bcl-2/Bcl-xL; the latter effect was abrogated by ABT-737. Combined treatment also markedly diminished Bax/Bak binding to Mcl-1, Bcl-2, or Bcl-xL. Bax, Bak, or Bim (BCL2L11) knockdown or Mcl-1 overexpression significantly diminished regimen-induced apoptosis. Interestingly, pharmacologic inhibition or short hairpin RNA knockdown of GSK3α/β significantly attenuated Mcl-1 downregulation and decreased apoptosis. In a systemic AML xenograft model, dual tetracycline-inducible knockdown of Bcl-2/Bcl-xL sharply increased BEZ235 antileukemic effects. In a subcutaneous xenograft model, BEZ235 and ABT-737 coadministration significantly diminished tumor growth, downregulated Mcl-1, activated caspases, and prolonged survival. Together, these findings suggest that antileukemic synergism between PI3K/AKT/mTOR inhibitors and BH3 mimetics involves multiple mechanisms, including Mcl-1 downregulation, release of Bim from Bcl-2/Bcl-xL as well as Bak and Bax from Mcl-1/Bcl-2/Bcl-xL, and GSK3α/β, culminating in Bax/Bak activation and apoptosis. They also argue that combining PI3K/AKT/mTOR inhibitors with BH3 mimetics warrants attention in AML, particularly in the setting of basal AKT activation and/or addiction.
Figures
Comment in
-
Targeted therapies: Priming apoptosis.Nat Rev Clin Oncol. 2013 Feb;10(2):67. doi: 10.1038/nrclinonc.2012.241. Epub 2013 Jan 15. Nat Rev Clin Oncol. 2013. PMID: 23319137 No abstract available.
References
-
- Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Manzoli L, McCubrey JA. Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opin Investig Drugs. 2009;18:1333–49. - PubMed
-
- Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS, Prie N, Verdier F, et al. Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood. 2005;106:1063–6. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
