Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb 13;135(6):2222-34.
doi: 10.1021/ja3097256. Epub 2013 Jan 31.

Ruthenium-mediated C-H functionalization of pyridine: the role of vinylidene and pyridylidene ligands

Affiliations

Ruthenium-mediated C-H functionalization of pyridine: the role of vinylidene and pyridylidene ligands

David G Johnson et al. J Am Chem Soc. .

Abstract

A combined experimental and theoretical study has demonstrated that [Ru(η(5)-C(5)H(5))(py)(2)(PPh(3))](+) is a key intermediate, and active catalyst for, the formation of 2-substituted E-styrylpyridines from pyridine and terminal alkynes HC≡CR (R = Ph, C(6)H(4)-4-CF(3)) in a 100% atom efficient manner under mild conditions. A catalyst deactivation pathway involving formation of the pyridylidene-containing complex [Ru(η(5)-C(5)H(5))(κ(3)-C(3)-C(5)H(4)NCH═CHR)(PPh(3))](+) and subsequently a 1-ruthanaindolizine complex has been identified. Mechanistic studies using (13)C- and D-labeling and DFT calculations suggest that a vinylidene-containing intermediate [Ru(η(5)-C(5)H(5))(py)(═C═CHR)(PPh(3))](+) is formed, which can then proceed to the pyridylidene-containing deactivation product or the desired product depending on the reaction conditions. Nucleophilic attack by free pyridine at the α-carbon in this complex subsequently leads to formation of a C-H agostic complex that is the branching point for the productive and unproductive pathways. The formation of the desired products relies on C-H bond cleavage from this agostic complex in the presence of free pyridine to give the pyridyl complex [Ru(η(5)-C(5)H(5))(C(5)H(4)N)(═C═CHR)(PPh(3))]. Migration of the pyridyl ligand (or its pyridylidene tautomer) to the α-carbon of the vinylidene, followed by protonation, results in the formation of the 2-styrylpyridine. These studies demonstrate that pyridylidene ligands play an important role in both the productive and nonproductive pathways in this catalyst system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources