Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Sep 19;32(38):4459-70.
doi: 10.1038/onc.2012.576. Epub 2012 Dec 17.

Genetic instability: tipping the balance

Affiliations
Review

Genetic instability: tipping the balance

A Janssen et al. Oncogene. .

Abstract

Tumor cells typically contain a genome that is highly divergent from the genome of normal, non-transformed cells. This genetic divergence is caused by a number of distinct changes that the tumor cell acquires during its transformation from a normal cell into a tumorigenic counterpart. Changes to the genome include mutations, deletions, insertions, and also gross chromosomal aberrations, such as chromosome translocations and whole chromosome gains or losses. This genetic disorder of the tumor cell has complicated the identification of crucial driver mutations that cause cancer. Moreover, the large genetic divergence between different tumors causes them to behave very differently, and makes it difficult to predict response to therapy. In addition, tumor cells are genetically unstable and frequently acquire new mutations and/or gross chromosomal aberrations as they divide. This is beneficial for the overall capacity of a tumor to adapt to changes in its environment, but newly acquired genetic alterations can also compromise the genetic dominance of the tumor cell and thus affect tumor cell viability. Here, we review the mechanisms that can cause gross chromosomal aberrations, and discuss how these affect tumor cell viability.

PubMed Disclaimer

LinkOut - more resources