Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2013 Sep;27(9):e201-7.
doi: 10.1097/BOT.0b013e318281a565.

A biomechanical comparison of one-third tubular plates versus periarticular plates for fixation of osteoporotic distal fibula fractures

Affiliations
Comparative Study

A biomechanical comparison of one-third tubular plates versus periarticular plates for fixation of osteoporotic distal fibula fractures

Adrian T Davis et al. J Orthop Trauma. 2013 Sep.

Abstract

Objectives: The purpose of this study was to test the biomechanical properties of locking and nonlocking plates using one-third tubular and periarticular plate designs in an osteoporotic distal fibula fracture model.

Methods: Twenty-four cadaveric specimens, whose bone mineral densities were obtained using dual x-ray absorptiometry scans, were tested. The fracture model simulated an OTA 44-B2.1 fracture. The constructs included (1) nonlocking one-third tubular plate, (2) locking one-third tubular plate, (3) nonlocking periarticular plate, and (4) locking periarticular plate. The specimens underwent axial loading followed by torsional loading to failure. Statistical analysis was performed using Kruskal-Wallis testing and further analysis with Mann-Whitney testing.

Results: The periarticular plates had greater rotational stiffness compared with the one-third tubular plates (P = 0.04). The nonlocking plates had greater torque to failure than the locking plates (P = 0.01). The nonlocking one-third tubular plate had greater torque to failure than the locking one-third tubular plate (P = 0.03). No significant differences were found in any of the comparisons regarding axial stiffness.

Conclusions: In biomechanical testing using an osteoporotic model of OTA 44-B2.1 fractures, periarticular plates were superior to one-third tubular plates in rotational stiffness only. Locking plates did not outperform their nonlocking counterparts. Periarticular plates should be considered when treating osteoporotic distal fibula fractures, but one-third tubular plates and nonlocking plates provide adequate fixation for these injuries.

PubMed Disclaimer

LinkOut - more resources