Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes
- PMID: 23251413
- PMCID: PMC3519481
- DOI: 10.1371/journal.pone.0050999
Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes
Abstract
Background: Hormone-refractory prostate cancer remains hindered by inevitable progression of resistance to first-line treatment with docetaxel. Recent studies suggest that phenotypic changes associated with cancer may be transferred from cell-to-cell via microvesicles/exosomes. Here we aimed to investigate phenotypic changes associated with docetaxel-resistance in order to help determine the complexity of this problem and to assess the relevance of secreted exosomes in prostate cancer.
Methodology/principal findings: Docetaxel-resistant variants of DU145 and 22Rv1 were established and characterised in terms of cross-resistance, morphology, proliferation, motility, invasion, anoikis, colony formation, exosomes secretion their and functional relevance. Preliminary analysis of exosomes from relevant serum specimens was also performed. Acquired docetaxel-resistance conferred cross-resistance to doxorubicin and induced alterations in motility, invasion, proliferation and anchorage-independent growth. Exosomes expelled from DU145 and 22Rv1 docetaxel-resistant variants (DU145RD and 22Rv1RD) conferred docetaxel-resistance to DU145, 22Rv1 and LNCap cells, which may be partly due to exosomal MDR-1/P-gp transfer. Exosomes from prostate cancer patients' sera induced increased cell proliferation and invasion, compared to exosomes from age-matched controls. Furthermore, exosomes from sera of patients undergoing a course of docetaxel treatment compared to matched exosomes from the same patients prior to commencing docetaxel treatment, when applied to both DU145 and 22Rv1 cells, showed a correlation between cellular response to docetaxel and patients' response to treatment with docetaxel.
Conclusions/significance: Our studies indicate the complex and multifaceted nature of docetaxel-resistance in prostate cancer. Furthermore, our in vitro observations and preliminary clinical studies indicate that exosomes may play an important role in prostate cancer, in cell-cell communication, and thus may offer potential as vehicles containing predictive biomarkers and new therapeutic targets.
Conflict of interest statement
Figures







References
-
- David-Beabes GL, Overman MJ, Petrofski JA, Campbell PA, de Marzo AM, et al. (2000) Doxorubicin-resistant variants of human prostate cancer cell lines DU 145, PC-3, PPC-1, and TSU-PR1: characterization of biochemical determinants of antineoplastic drug sensitivity. Int J Oncol 17: 1077–1086. - PubMed
-
- Takeda M, Mizokami A, Mamiya K, Li YQ, Zhang J, et al. (2007) The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines. Prostate 67: 955–967. - PubMed
-
- Yu D, Liu B, Jing T, Sun D, Price JE, et al. (1998) Overexpression of both p185c-erbB2 and p170mdr-1 renders breast cancer cells highly resistant to taxol. Oncogene 16: 2087–2094. - PubMed
-
- Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, et al. (2007) Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 14: 3629–3637. - PubMed
-
- Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, et al. (2007) Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 67: 1979–1987. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical