Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(12):e51364.
doi: 10.1371/journal.pone.0051364. Epub 2012 Dec 12.

Ultraviolet radiation influences perch selection by a neotropical poison-dart frog

Affiliations

Ultraviolet radiation influences perch selection by a neotropical poison-dart frog

Lee B Kats et al. PLoS One. 2012.

Abstract

Ambient ultraviolet-B radiation can harm amphibian eggs, larvae and adults. However, some amphibians avoid UV-B radiation when given the opportunity. The strawberry poison dart frog, Oophaga pumilio, is diurnal and males vocalize throughout the day in light gaps under forest canopies that expose them to solar radiation. Previous studies have demonstrated that males calling from high perches are more successful at mating than those at lower perches. We investigated whether frogs at higher perches receive more ultraviolet-B than those calling from lower perches. We also investigated whether frogs on perches receiving relatively low ultraviolet-B levels maintained their positions for longer compared to individuals calling from perches receiving higher levels of ultraviolet-B. Finally, since it has been hypothesized that some animals utilize levels of UV-A as a visual cue to avoid UV-B damage, we artificially elevated ultraviolet-A levels to examine whether males exposed to artificially elevated ultraviolet-A abandoned their perches sooner compared to males exposed to visible light. We found that frogs called from perches receiving low ultraviolet-B regardless of perch height, and that frogs maintain their positions longer on perches receiving low ultraviolet-B compared to perches receiving even slightly higher ultraviolet-B levels. Exposing the frogs to artificially elevated levels of ultraviolet-A radiation caused males to move off of their perches faster than when they were exposed to a control light source. These experiments suggest that ultraviolet radiation plays an important role in frog behavior related to perch selection, even in rainforests where much of the solar radiation is shielded by the forest canopy.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: One author received funding from a commercial source (Budweiser); however, this does not alter the authors' adherence to all the PLOS ONE policies on sharing data or materials.

Figures

Figure 1
Figure 1. UV-B levels at frog perches and nearby random locations.
Comparison of mean UV-B levels (with standard error bars) at the frog perches (frog); at a random location 20 cm from the frog perch at the same height (random); at ground level (0 m), and at six distances above the ground (0.25 m–2.5 m).
Figure 2
Figure 2. An example of a typical frog perch.
Frogs were often seen calling from perches that offered cover from UV-B almost immediately above their location. (Photograph by Silas Dudley).

Similar articles

Cited by

References

    1. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, et al. (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783–1786. - PubMed
    1. Blaustein AR, Kiesecker JM (2002) Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett 5: 597–608.
    1. Middleton EM, Herman JR, Celarier EA, Wilkinson JW, Carey C, et al. (2001) Evaluating ultraviolet radiation exposure with satellite data at sites of amphibian declines in Central and South America. Conserv Biol 15: 914–929.
    1. Croteau MC, Davidson MA, Lean DR, Trudeau VL (2008) Global increases in ultraviolet B radiation: potential impacts on amphibian development and metamorphosis. Physiol Biochem Zool 81: 743–761. - PubMed
    1. Bancroft BA, Baker NJ, Blaustein AR (2008) A meta-analysis of the effects of ultraviolet B radiation and its synergistic interactions with pH, contaminants, and disease on amphibian survival. Conserv Biol 22: 987–996. - PubMed

Publication types