Wanted: a positive control for anomalous subdiffusion
- PMID: 23260043
- PMCID: PMC3525842
- DOI: 10.1016/j.bpj.2012.10.038
Wanted: a positive control for anomalous subdiffusion
Abstract
Anomalous subdiffusion in cells and model systems is an active area of research. The main questions are whether diffusion is anomalous or normal, and if it is anomalous, its mechanism. The subject is controversial, especially the hypothesis that crowding causes anomalous subdiffusion. Anomalous subdiffusion measurements would be strengthened by an experimental standard, particularly one able to cross-calibrate the different types of measurements. Criteria for a calibration standard are proposed. First, diffusion must be anomalous over the length and timescales of the different measurements. The length-scale is fundamental; the time scale can be adjusted through the viscosity of the medium. Second, the standard must be theoretically well understood, with a known anomalous subdiffusion exponent, ideally readily tunable. Third, the standard must be simple, reproducible, and independently characterizable (by, for example, electron microscopy for nanostructures). Candidate experimental standards are evaluated, including obstructed lipid bilayers; aqueous systems obstructed by nanopillars; a continuum percolation system in which a prescribed fraction of randomly chosen obstacles in a regular array is ablated; single-file diffusion in pores; transient anomalous subdiffusion due to binding of particles in arrays such as transcription factors in randomized DNA arrays; and computer-generated physical trajectories.
Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Similar articles
-
Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study.Biophys J. 2001 Oct;81(4):2226-40. doi: 10.1016/S0006-3495(01)75870-5. Biophys J. 2001. PMID: 11566793 Free PMC article.
-
Controlling Anomalous Diffusion in Lipid Membranes.Biophys J. 2019 Mar 19;116(6):1085-1094. doi: 10.1016/j.bpj.2018.12.024. Epub 2019 Jan 16. Biophys J. 2019. PMID: 30846364 Free PMC article.
-
A biological interpretation of transient anomalous subdiffusion. I. Qualitative model.Biophys J. 2007 Feb 15;92(4):1178-91. doi: 10.1529/biophysj.106.092619. Epub 2006 Dec 1. Biophys J. 2007. PMID: 17142285 Free PMC article.
-
Non-Brownian diffusion in lipid membranes: Experiments and simulations.Biochim Biophys Acta. 2016 Oct;1858(10):2451-2467. doi: 10.1016/j.bbamem.2016.01.022. Epub 2016 Jan 28. Biochim Biophys Acta. 2016. PMID: 26826272 Review.
-
Fronts in anomalous diffusion-reaction systems.Philos Trans A Math Phys Eng Sci. 2013 Jan 13;371(1982):20120179. doi: 10.1098/rsta.2012.0179. Philos Trans A Math Phys Eng Sci. 2013. PMID: 23185056 Review.
Cited by
-
Synthetic Stochastic Motion Platform for Testing Single Particle Tracking Microscopes.IEEE Trans Control Syst Technol. 2022 Nov;30(6):2726-2733. doi: 10.1109/tcst.2022.3149597. Epub 2022 Feb 21. IEEE Trans Control Syst Technol. 2022. PMID: 36300161 Free PMC article.
-
Mixed Macromolecular Crowding: A Protein and Solvent Perspective.ACS Omega. 2018 Apr 30;3(4):4316-4330. doi: 10.1021/acsomega.7b01864. Epub 2018 Apr 19. ACS Omega. 2018. PMID: 30023892 Free PMC article.
-
High-Precision Protein-Tracking With Interferometric Scattering Microscopy.Front Cell Dev Biol. 2020 Nov 3;8:590158. doi: 10.3389/fcell.2020.590158. eCollection 2020. Front Cell Dev Biol. 2020. PMID: 33224953 Free PMC article.
-
Simulation Best Practices for Lipid Membranes [Article v1.0].Living J Comput Mol Sci. 2019 Jan 9;1(1):5966. doi: 10.33011/livecoms.1.1.5966. Living J Comput Mol Sci. 2019. PMID: 36204133 Free PMC article.
-
Feedforward Control for Single Particle Tracking Synthetic Motion.IFAC Pap OnLine. 2020;53(2):8878-8883. doi: 10.1016/j.ifacol.2020.12.1407. Epub 2021 Apr 14. IFAC Pap OnLine. 2020. PMID: 34027521 Free PMC article.
References
-
- Magdziarz M., Weron A. Anomalous diffusion: testing ergodicity breaking in experimental data. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2011;84:051138. - PubMed
-
- Höfling F., Franosch T. Crossover in the slow decay of dynamic correlations in the Lorentz model. Phys. Rev. Lett. 2007;98:140601. - PubMed
-
- Szymanski J., Weiss M. Elucidating the origin of anomalous diffusion in crowded fluids. Phys. Rev. Lett. 2009;103:038102. - PubMed
-
- Horton M.R., Höfling F., Franosch T. Development of anomalous diffusion among crowding proteins. Soft Matter. 2010;6:2648–2656.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases