Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 1;516(1):58-65.
doi: 10.1016/j.gene.2012.12.011. Epub 2012 Dec 20.

Molecular characterization of ZzR1 resistance gene from Zingiber zerumbet with potential for imparting Pythium aphanidermatum resistance in ginger

Affiliations

Molecular characterization of ZzR1 resistance gene from Zingiber zerumbet with potential for imparting Pythium aphanidermatum resistance in ginger

R Aswati Nair et al. Gene. .

Abstract

Soft rot disease caused by the oomycete Pythium aphanidermatum (Edson) Fitzp. is the most economically significant disease of ginger (Zingiber officinale Rosc.) in tropical countries. All available ginger cultivars are susceptible to this pathogen. However a wild ginger relative viz., Zingiber zerumbet L. Smith, was identified as a potential soft rot resistance donor. In the present study, a putative resistance (R) gene designated, ZzR1 was isolated and characterized from Z. zerumbet using sequence information from Zingiber RGCs identified in our earlier experiments. Analysis of the 2280 bp segment revealed a 2157 bp open reading frame (ORF) encoding a putative cytoplasmically localized protein. The deduced ZzR1 protein shared high homology with other known R-genes belonging to the CC-NBS-LRR (coiled coil-nucleotide binding site-leucine rich repeat) class and had a calculated molecular weight of 84.61kDa. Real-time PCR analysis of ZzR1 transcription in Z. zerumbet following pathogen infection demonstrated activation at 3 hpi thus suggesting an involvement of ZzR1 in Z. zerumbet defense mechanism. Although many R-genes have been characterized from different taxa, none of them will help in the development of resistant ginger cultivars owing to the phenomenon of "Restricted Taxonomic Functionality" (RTF). Thus ZzR1 gene characterized from the resistant wild Zingiber accession represents a valuable genomic resource for ginger improvement programs. This first report on R-gene isolation from the Zingiber secondary gene pool is pivotal in designing strategies for engineering resistance in ginger, which is otherwise not amenable to conventional improvement programs owing to sexual reproduction barriers.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources