Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May;20(3):881-91.
doi: 10.1016/j.ultsonch.2012.11.011. Epub 2012 Nov 28.

Ultrasonic energy input influence οn the production of sub-micron o/w emulsions containing whey protein and common stabilizers

Affiliations
Free article

Ultrasonic energy input influence οn the production of sub-micron o/w emulsions containing whey protein and common stabilizers

O Kaltsa et al. Ultrason Sonochem. 2013 May.
Free article

Abstract

Ultrasonication may be a cost-effective emulsion formation technique, but its impact on emulsion final structure and droplet size needs to be further investigated. Olive oil emulsions (20wt%) were formulated (pH∼7) using whey protein (3wt%), three kinds of hydrocolloids (0.1-0.5wt%) and two different emulsification energy inputs (single- and two-stage, methods A and B, respectively). Formula and energy input effects on emulsion performance are discussed. Emulsions stability was evaluated over a 10-day storage period at 5°C recording the turbidity profiles of the emulsions. Optical micrographs, droplet size and viscosity values were also obtained. A differential scanning calorimetric (DSC) multiple cool-heat cyclic method (40 to -40°C) was performed to examine stability via crystallization phenomena of the dispersed phase. Ultrasonication energy input duplication from 11kJ to 25kJ (method B) resulted in stable emulsions production (reduction of back scattering values, dBS∼1% after 10days of storage) at 0.5wt% concentration of any of the stabilizers used. At lower gum amount samples became unstable due to depletion flocculation phenomena, regardless of emulsification energy input used. High energy input during ultrasonic emulsification also resulted in sub-micron oil-droplets emulsions (D(50)=0.615μm compared to D(50)=1.3μm using method A) with narrower particle size distribution and in viscosity reduction. DSC experiments revealed no presence of bulk oil formation, suggesting stability for XG 0.5wt% emulsions prepared by both methods. Reduced enthalpy values found when method B was applied suggesting structural modifications produced by extensive ultrasonication. Change of ultrasonication conditions results in significant changes of oil droplet size and stability of the produced emulsions.

PubMed Disclaimer

Publication types

LinkOut - more resources