A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion
- PMID: 23267063
- PMCID: PMC3545781
- DOI: 10.1073/pnas.1211447110
A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion
Abstract
Visible phenotypes based on locomotion and posture have played a critical role in understanding the molecular basis of behavior and development in Caenorhabditis elegans and other model organisms. However, it is not known whether these human-defined features capture the most important aspects of behavior for phenotypic comparison or whether they are sufficient to discover new behaviors. Here we show that four basic shapes, or eigenworms, previously described for wild-type worms, also capture mutant shapes, and that this representation can be used to build a dictionary of repetitive behavioral motifs in an unbiased way. By measuring the distance between each individual's behavior and the elements in the motif dictionary, we create a fingerprint that can be used to compare mutants to wild type and to each other. This analysis has revealed phenotypes not previously detected by real-time observation and has allowed clustering of mutants into related groups. Behavioral motifs provide a compact and intuitive representation of behavioral phenotypes.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





References
-
- Sokolowski MB. Drosophila: Genetics meets behaviour. Nat Rev Genet. 2001;2(11):879–890. - PubMed
-
- Granato M, et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development. 1996;123:399–413. - PubMed
-
- Hrabé de Angelis MH, et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet. 2000;25(4):444–447. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical