Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 26;13(12):R123.
doi: 10.1186/gb-2012-13-12-r123.

Differential analysis of high-throughput quantitative genetic interaction data

Differential analysis of high-throughput quantitative genetic interaction data

Gordon J Bean et al. Genome Biol. .

Abstract

Synthetic genetic arrays have been very effective at measuring genetic interactions in yeast in a high-throughput manner and recently have been expanded to measure quantitative changes in interaction, termed 'differential interactions', across multiple conditions. Here, we present a strategy that leverages statistical information from the experimental design to produce a novel, quantitative differential interaction score, which performs favorably compared to previous differential scores. We also discuss the added utility of differential genetic-similarity in differential network analysis. Our approach is preferred for differential network analysis, and our implementation, written in MATLAB, can be found at http://chianti.ucsd.edu/~gbean/compute_differential_scores.m.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The paired experimental pipeline. (a) The pipeline for generating differential genetic interactions is the same as for static genetic interactions except for a split onto treated and untreated plates in the last step. (b) Normalized colony size profiles for the same experimental replicate across the two conditions (blue) have the greatest Pearson correlation, as compared to the profiles of two experimental replicates of the same condition (green) or the profiles of different queries (red). EMAP, Epistasis MAPping.
Figure 2
Figure 2
Theoretical and observed differential variances. Bar plot of the observed static, expected differential (assuming independence), and observed differential variances of normalized colony size residuals. The median values across all double mutants are shown. Bandyopadhyay et al. [6]; Guénolé et al. [7].
Figure 3
Figure 3
Differential profile similarity between SWI4 and HIR. (a) Bar plot showing the Pearson correlation of HIR1/2/3 profiles with SWI4 for untreated (UT), MMS, and differential (dS) scores. (b) Heatmaps of the untreated, MMS, and differential interaction profiles of SWI4 and HIR1; the bottom panel illustrates the interactions with greatest similarity between SWI4 and HIR1.
Figure 4
Figure 4
False discovery rate and reproducibility of the dS score. (a) Plot of the false discovery rate of the dS score as a function of score magnitude. (b,c) Scatter of differential scores calculated on independent replicate subsets using (b) the B scores and (c) the dS score; the points shown in either panel are only those scored by both analyses. (d) Plot comparing the Pearson correlation of significant interactions for the B and dS scores (blue and green, respectively) over a full range of significance thresholds - that is, the correlation of the top n percent of the interactions for n = 0.1% (left side) to n = 100% (right side); error bars (non-bolded lines) indicate the 95% confidence intervals of the correlation coefficient.
Figure 5
Figure 5
Performance of dS score and differential profile similarity. (a-d) Precision-recall plots comparing the biological enrichment of B and dS scores and their corresponding profile similarity scores for DDR interactions (a,c) and co-complex interactions (b,d) using the data from Bandyopadhyay et al. [6] (a,b) and Guénolé et al. [7] (c,d).

References

    1. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JLY, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin Z-Y, Liang W, Marback M, Paw J, San Luis B-J, Shuteriqi E, Tong AHY, van Dyk N. et al.The genetic landscape of a cell. Science. 2010;13:425–431. doi: 10.1126/science.1180823. - DOI - PMC - PubMed
    1. Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FCP, Weissman JS, Keogh M-C, Koller D, Shokat KM, Krogan NJ. Functional organization of the S. cerevisiae phosphorylation network. Cell. 2009;13:952–963. doi: 10.1016/j.cell.2008.12.039. - DOI - PMC - PubMed
    1. Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell. 2005;13:507–519. doi: 10.1016/j.cell.2005.08.031. - DOI - PubMed
    1. Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature. 2007;13:806–810. doi: 10.1038/nature05649. - DOI - PubMed
    1. Zheng J, Benschop JJ, Shales M, Kemmeren P, Greenblatt J, Cagney G, Holstege F, Li H, Krogan NJ. Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Systems Biol. 2010;13:420. - PMC - PubMed

Publication types