Functionalized graphene oxide for clinical glucose biosensing in urine and serum samples
- PMID: 23269871
- PMCID: PMC3529650
- DOI: 10.2147/IJN.S38402
Functionalized graphene oxide for clinical glucose biosensing in urine and serum samples
Abstract
A novel clinical glucose biosensor fabricated using functionalized metalloid-polymer (silver-silica coated with polyethylene glycol) hybrid nanoparticles on the surface of a graphene oxide nanosheet is reported. The cyclic voltammetric response of glucose oxidase modification on the surface of a functionalized graphene oxide electrode showed a surface-confined reaction and an effective redox potential near zero volts, with a wide linearity of 0.1-20 mM and a sensitivity of 7.66 μA mM(-1) cm(-2). The functionalized graphene oxide electrode showed a better electrocatalytic response toward oxidation of H(2)O(2) and reduction of oxygen. The practical applicability of the functionalized graphene oxide electrode was demonstrated by measuring the peak current against multiple urine and serum samples from diabetic patients. This new hybrid nanoarchitecture combining a three-dimensional metalloid-polymer hybrid and two-dimensional graphene oxide provided a thin solid laminate on the electrode surface. The easy fabrication process and retention of bioactive immobilized enzymes on the functionalized graphene oxide electrode could potentially be extended to detection of other biomolecules, and have broad applications in electrochemical biosensing.
Keywords: clinical diagnostics; cyclic voltammetry; glucose biosensor; glucose oxidase; metalloid-polymer nanoparticles.
Figures






Similar articles
-
Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor.Biosens Bioelectron. 2013 Mar 15;41:309-15. doi: 10.1016/j.bios.2012.08.045. Epub 2012 Aug 28. Biosens Bioelectron. 2013. PMID: 22964382
-
Graphene oxide functionalized with silver@silica-polyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin.Biosens Bioelectron. 2014 Aug 15;58:200-4. doi: 10.1016/j.bios.2014.02.062. Epub 2014 Mar 5. Biosens Bioelectron. 2014. PMID: 24637169
-
One-step "green" preparation of graphene nanosheets and carbon nanospheres mixture by electrolyzing graphite rob and its application for glucose biosensing.Biosens Bioelectron. 2011 Dec 15;30(1):112-7. doi: 10.1016/j.bios.2011.08.039. Epub 2011 Sep 6. Biosens Bioelectron. 2011. PMID: 21959225
-
Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications.Biosens Bioelectron. 2013 Mar 15;41:43-53. doi: 10.1016/j.bios.2012.09.031. Epub 2012 Sep 29. Biosens Bioelectron. 2013. PMID: 23083910 Review.
-
Graphene-based electrodes.Adv Mater. 2012 Nov 27;24(45):5979-6004. doi: 10.1002/adma.201201587. Epub 2012 Aug 24. Adv Mater. 2012. PMID: 22927209 Review.
Cited by
-
Continuous release of bone morphogenetic protein-2 through nano-graphene oxide-based delivery influences the activation of the NF-κB signal transduction pathway.Int J Nanomedicine. 2017 Feb 13;12:1215-1226. doi: 10.2147/IJN.S124040. eCollection 2017. Int J Nanomedicine. 2017. PMID: 28243085 Free PMC article.
-
State-of-Art Bio-Assay Systems and Electrochemical Approaches for Nanotoxicity Assessment.Front Bioeng Biotechnol. 2020 Apr 28;8:325. doi: 10.3389/fbioe.2020.00325. eCollection 2020. Front Bioeng Biotechnol. 2020. PMID: 32411681 Free PMC article. Review.
-
Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices.J Nanobiotechnology. 2015 Mar 12;13:21. doi: 10.1186/s12951-015-0081-9. J Nanobiotechnology. 2015. PMID: 25886153 Free PMC article.
-
Self-Powered Diaper Sensor with Wireless Transmitter Powered by Paper-Based Biofuel Cell with Urine Glucose as Fuel.ACS Sens. 2021 Sep 24;6(9):3409-3415. doi: 10.1021/acssensors.1c01266. Epub 2021 Jul 15. ACS Sens. 2021. PMID: 34264071 Free PMC article.
-
Cross-linked glucose oxidase clusters for biofuel cell anode catalysts.Biofabrication. 2013 Sep;5(3):035009. doi: 10.1088/1758-5082/5/3/035009. Epub 2013 Jul 23. Biofabrication. 2013. PMID: 23880606 Free PMC article.
References
-
- Uenoyama H, Nankai S. In: Chemical Sensor Technology. Aizawa M, editor. Vol. 5. Tokyo, Japan: Kodansha Ltd; 1994. pp. 177–185.
-
- Cui G, Kim SJ, Choi S, et al. A disposable amperometric sensor screen printed on a nitrocellulose strip: a glucose biosensor employing lead oxide as an interference-removing agent. Anal Chem. 2000;72:1925–1929. - PubMed
-
- Miyashita M, Ito N, Ikeda S, et al. Development of urine glucose meter based on micro-planer amperometric biosensor and its clinical application for self-monitoring of urine glucose. Biosens Bioelectron. 2009;24:1336–1340. - PubMed
-
- Nekrassova O, Lawrence NS, Compton RG. Analytical determination of homocysteine: a review. Talanta. 2003;60:1085–1095. - PubMed
-
- Nekrassova O, Lawrence NS, Compton RG. Selective electroanalytical assay for cysteine at a boron doped diamond electrode. Electroanalysis. 2004;16:1285–1291.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical