Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 Dec 27:13:733.
doi: 10.1186/1471-2164-13-733.

A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits

Affiliations
Comparative Study

A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits

Congying Chen et al. BMC Genomics. .

Abstract

Background: Copy number variation (CNV) is a major source of structural variants and has been commonly identified in mammalian genome. It is associated with gene expression and may present a major genetic component of phenotypic diversity. Unlike many other mammalian genomes where CNVs have been well annotated, studies of porcine CNV in diverse breeds are still limited.

Result: Here we used Porcine SNP60 BeadChip and PennCNV algorithm to identify 1,315 putative CNVs belonging to 565 CNV regions (CNVRs) in 1,693 pigs from 18 diverse populations. Total 538 out of 683 CNVs identified in a White Duroc × Erhualian F2 population fit Mendelian transmission and 6 out of 7 randomly selected CNVRs were confirmed by quantitative real time PCR. CNVRs were non-randomly distributed in the pig genome. Several CNV hotspots were found on pig chromosomes 6, 11, 13, 14 and 17. CNV numbers differ greatly among different pig populations. The Duroc pigs were identified to have the most number of CNVs per individual. Among 1,765 transcripts located within the CNVRs, 634 genes have been reported to be copy number variable genes in the human genome. By integrating analysis of QTL mapping, CNVRs and the description of phenotypes in knockout mice, we identified 7 copy number variable genes as candidate genes for phenotypes related to carcass length, backfat thickness, abdominal fat weight, length of scapular, intermuscle fat content of logissimus muscle, body weight at 240 day, glycolytic potential of logissimus muscle, mean corpuscular hemoglobin, mean corpuscular volume and humerus diameter.

Conclusion: We revealed the distribution of the unprecedented number of 565 CNVRs in pig genome and investigated copy number variable genes as the possible candidate genes for phenotypic traits. These findings give novel insights into porcine CNVs and provide resources to facilitate the identification of trait-related CNVs.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Distribution of CNVRs detected in this study in sus scrofa reference genome assembly 10.2. Black lines represent all 18 porcine autosomes. Red dots indicate duplicated CNVRs, while deleted CNVRs are highlighted in cyan and regions with both loss and gain are indicated in orange
Figure 2
Figure 2
Comparison between 565 CNVRs identified in this study and a previously reported porcine CNV dataset in terms of count and length
Figure 3
Figure 3
Functional categories of CNV-related genes by gene ontology analysis. The bar plot represents the percentage of gene counts within each GO category. All functions or processes listed have enrichment of corrected P values < 0.05

References

    1. Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61:437–455. doi: 10.1146/annurev-med-100708-204735. - DOI - PubMed
    1. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME. Global variation in copy number in the human genome. Nature. 2006;444:444–454. doi: 10.1038/nature05329. - DOI - PMC - PubMed
    1. Marenne G, Rodríguez-Santiago B, Closas MG, Pérez-Jurado L, Rothman N, Rico D, Pita G, Pisano DG, Kogevinas M, Silverman DT, Valencia A, Real FX, Chanock SJ, Génin E, Malats N. Assessment of copy number variation using the Illumina Infinium 1 M SNP-array: a comparison of methodological approaches in the Spanish Bladder Cancer/EPICURO study. Hum Mutat. 2011;32:240–248. doi: 10.1002/humu.21398. - DOI - PMC - PubMed
    1. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17:1665–1674. doi: 10.1101/gr.6861907. - DOI - PMC - PubMed
    1. Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P, Bassett AS, Seller A, Holmes CC, Ragoussis J. QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res. 2007;35:2013–2025. doi: 10.1093/nar/gkm076. - DOI - PMC - PubMed

Publication types

LinkOut - more resources