Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2012;7(12):e50248.
doi: 10.1371/journal.pone.0050248. Epub 2012 Dec 13.

Sequential anti-cytomegalovirus response monitoring may allow prediction of cytomegalovirus reactivation after allogeneic stem cell transplantation

Affiliations
Multicenter Study

Sequential anti-cytomegalovirus response monitoring may allow prediction of cytomegalovirus reactivation after allogeneic stem cell transplantation

Sylvia Borchers et al. PLoS One. 2012.

Erratum in

  • PLoS One. 2013;8(4). doi: 10.1371/annotation/43e9b84c-fbe3-4b39-88c8-1cde34b0afea

Abstract

Background: Reconstitution of cytomegalovirus-specific CD3(+)CD8(+) T cells (CMV-CTLs) after allogeneic hematopoietic stem cell transplantation (HSCT) is necessary to bring cytomegalovirus (CMV) reactivation under control. However, the parameters determining protective CMV-CTL reconstitution remain unclear to date.

Design and methods: In a prospective tri-center study, CMV-CTL reconstitution was analyzed in the peripheral blood from 278 patients during the year following HSCT using 7 commercially available tetrameric HLA-CMV epitope complexes. All patients included could be monitored with at least CMV-specific tetramer.

Results: CMV-CTL reconstitution was detected in 198 patients (71%) after allogeneic HSCT. Most importantly, reconstitution with 1 CMV-CTL per µl blood between day +50 and day +75 post-HSCT discriminated between patients with and without CMV reactivation in the R+/D+ patient group, independent of the CMV-epitope recognized. In addition, CMV-CTLs expanded more daramtaically in patients experiencing only one CMV-reactivation than those without or those with multiple CMV reactivations. Monitoring using at least 2 tetramers was possible in 63% (n = 176) of the patients. The combinations of particular HLA molecules influenced the numbers of CMV-CTLs detected. The highest CMV-CTL count obtained for an individual tetramer also changed over time in 11% of these patients (n = 19) resulting in higher levels of HLA-B*0801 (IE-1) recognizing CMV-CTLs in 14 patients.

Conclusions: Our results indicate that 1 CMV-CTL per µl blood between day +50 to +75 marks the beginning of an immune response against CMV in the R+/D+ group. Detection of CMV-CTL expansion thereafter indicates successful resolution of the CMV reactivation. Thus, sequential monitoring of CMV-CTL reconstitution can be used to predict patients at risk for recurrent CMV reactivation.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Gating strategy for detection of tetramer-stained CMV-CTLs.
The gating hierarchy and tetramer positive cells in a patient expressing 3 of the HLA molecules represented in our tetramer set are shown. The lymphocytes were gated in the FS/SS quadrant (upper left) followed by the selection of CD3+CD8+-positive cells (lower left). Within the CD3+CD8+-positive population, the percentage of cells that bind each tetramer is determined in individual samples (200 µl whole blood each). Staining results using the negative control tetramer, HLA-A*0101 CMV tetramer, HLA-B*0702 CMV tetramer and HLA-B*0801 CMV tetramer are shown. The number of CMV-CTLs per µl blood is indicated in each tetramer plot.
Figure 2
Figure 2. CMV-CTL levels vary depending on the HLA-epitope tetramer used for detection and the occurrence of CMV-reactivation.
(A) Median circulating CMV-CTL levels in our patient cohort are shown for six different HLA-restricted CMV epitopes monitored by commercially available HLA-epitope tetramers. Data are shown for all patients with a detectable CD3+/CD8+ T cell response (CMV-CTLs >0 per µl blood) during the first year following HSCT, and summarized as mean values of CMV-CTLs calculated for each patient (filled squares). P-values were calculated using the Kruskal-Wallis test followed by Dunn's multiple comparison. Patients not mounting a response (0 CMV-CTL per µl blood) or with cell counts below the detection limit are denoted below the dashed line. (B) Median CMV-CTL levels for each HLA-restricted CMV epitope are shown for each patient who experienced (empty squares, CMV-R) or did not experience (filled squares, no CMV-R) CMV reactivations. The median CMV-CTL levels from the entire cohort are shown in the box above each group. No results are shown for the HLA-A*1101 tetramer, since only one patient was monitored. * p≤0.05, ** p≤0.01, *** p≤0.001.
Figure 3
Figure 3. Specific HLA combinations influence the CMV-CTL levels.
(A) Median CMV-CTL levels in patients expressing only and monitored with HLA-A*0201 (filled circles) or HLA-B*0702 (filled squares) tetramers, respectively, were calculated and compared to the levels in patients expressing both alleles. The level of HLA-A0201 CMV-CTL (white circle) was significantly lower in patients expressing HLA-A0201 and –B0702 compared to those only expressing the A0201 allele (filled circles). No such difference was found for HLA-B0702-binding CTL levels between patients who only express the B0702 allele (filled square) or both A0201 and B0702 alleles (white squares). (B) The median numbers of CMV-CTLs detected by each tetramer were compared in all patients monitored with at least 2 different tetramers (n = 176/278). The analysis for one patient is shown as an example. The number of CMV-CTLs detected by each tetramer are plotted over time. CMV reactivation occurred on day +41 (spike in the pp65 line), triggering CMV-CTL expansion. HLA-B*0801 detected the highest numbers of CMV-CTLs until day +100 when a switch occurred. * p≤0.05.
Figure 4
Figure 4. CMV-CTL monitoring enables early discrimination between R+/D+ patients in whom CMV reactivation did or did not occur.
(A) A threshold of 1 CMV-CTL per µl blood was applied to discriminate between patients with and without CMV reactivation in the R+/D+ group. P-values from log-rank testing are indicated for days +50 (*) and +75 (+). (B) CMV-CTL reconstitution after HSCT is shown for one patient in the R+/D+ group. CMV-CTL numbers per µl blood (left y-axis, empty squares) were plotted against the time in days after HSCT. The right y-axis (filled circles) shows the number of pp65-positive cells/400,000 leukocytes as the means of detecting CMV reactivation. Positive PCR results for CMV are indicated at the top of each graph (half filled triangle). CMV reactivation occurred on day +39 (spike in filled circle line) in this patient, after which CMV-CTL expansion occurred (rise in empty square line). (C) Reconstitution of CMV-CTLs within the R+D− group using a threshold of 1 CMV-CTL per µl blood. Until day +100 no significant reconstitution occurred. (D) Prolonged CMV immune reconstitution (empty squares) and necessary prolonged antiviral therapy (striped bar) in one patient from the R+/D− group.
Figure 5
Figure 5. Kinetics of CMV-CTL expansion after CMV reactivation.
(A) CMV-CTL levels around day +30 (the interval from day +15 to +45 was assessed, filled symbols) and day +60 (the interval from day +46 to +99 was assessed, filled symbols) in patients who experienced (circles) or did not experience (triangles) a CMV reactivation prior to day +100 in the R+/D+ group. Significant differences between groups were assessed by t-test with Welch's correction, and included the 34 data points not depicted because they lie outside axis limits. (B) Patients in the R+/D+ group who experienced no (triangles), a single (circles) or multiple (diamonds) CMV reactivations before day +100 were compared (t-test with Welch's correction) using the difference between the slopes of the lines created by the CMV-CTL levels during the interval from day +15 to +45 and the interval from day +46 to +99. The dotted line indicates no change in CMV-CTL level between the measurements in both intervals. ** p≤0.01.

Similar articles

Cited by

References

    1. Mori T, Kato J (2010) Cytomegalovirus infection/disease after hematopoietic stem cell transplantation. Int J Hematol 91: 588–595. - PubMed
    1. Boeckh M, Nichols WG, Papanicolaou G, Rubin R, Wingard JR, et al. (2003) Cytomegalovirus in hematopoietic stem cell transplant recipients: Current status, known challenges, and future strategies. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation 9: 543–558. - PubMed
    1. Hebart H, Einsele H (2004) Clinical aspects of CMV infection after stem cell transplantation. Hum Immunol 65: 432–436. - PubMed
    1. Torres HA, Aguilera E, Safdar A, Rohatgi N, Raad II, et al. (2008) Fatal cytomegalovirus pneumonia in patients with haematological malignancies: an autopsy-based case-control study. Clin Microbiol Infect 14: 1160–1166. - PubMed
    1. Ljungman P, Griffiths P, Paya C (2002) Definitions of cytomegalovirus infection and disease in transplant recipients. Clin Infect Dis 34: 1094–1097. - PubMed

Publication types

MeSH terms