Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(12):e51491.
doi: 10.1371/journal.pone.0051491. Epub 2012 Dec 14.

Respiratory viruses in hospitalized children with influenza-like illness during the h1n1 2009 pandemic in Sweden [corrected]

Affiliations

Respiratory viruses in hospitalized children with influenza-like illness during the h1n1 2009 pandemic in Sweden [corrected]

Samuel Rhedin et al. PLoS One. 2012.

Erratum in

  • PLoS One. 2013;8(7). doi:10.1371/annotation/fcd5bca6-cbc4-493e-9083-d11903bcbc48

Abstract

Background: The swine-origin influenza A(H1N1)pdm09 pandemic of 2009 had a slower spread in Europe than expected. The human rhinovirus (HRV) has been suggested to have delayed the pandemic through viral interference. The importance of co-infections over time during the pandemic and in terms of severity of the disease needs to be assessed.

Objective: The aim of this study was to investigate respiratory viruses and specifically the presence of co-infections with influenza A(H1N1)pdm09 (H1N1) in hospitalized children during the H1N1 pandemic. A secondary aim was to investigate if co-infections were associated with severity of disease.

Methods: A retrospective study was performed on 502 children with influenza-like illness admitted to inpatient care at a pediatric hospital in Stockholm, Sweden during the 6 months spanning the H1N1 pandemic in 2009. Respiratory samples were analyzed for a panel of 16 viruses by real-time polymerase chain reaction.

Results: One or more viruses were detected in 61.6% of the samples. Of these, 85.4% were single infections and 14.6% co-infections (2-4 viruses). The number of co-infections increased throughout the study period. H1N1 was found in 83 (16.5%) children and of these 12 (14.5%) were co-infections. HRV and H1N1 circulated to a large extent at the same time and 6.0% of the H1N1-positive children were also positive for HRV. There was no correlation between co-infections and severity of disease in children with H1N1.

Conclusions: Viral co-infections were relatively common in H1N1 infected hospitalized children and need to be considered when estimating morbidity attributed to H1N1. Population-based longitudinal studies with repeated sampling are needed to improve the understanding of the importance of co-infections and viral interference.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Prevalence over time.
Total number of detected viruses among children with influenza-like illness at Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm during the influenza A(H1N1)pdm09 pandemic. Included is also the number of PCR-negative children (neg, n = 193) as well as total number of sampled children (n = 502).
Figure 2
Figure 2. Co-infections over time.
Number of children with co-infections over time in (a) all children and (b) H1N1-positive children. H1N1-positive co-infected children divided into co-infection with HRV (H1N1/HRV) and co-infection with other viruses (H1N1/other).
Figure 3
Figure 3. Co-infections and age.
Comparison of number of co-infections according to age between children under 1 year (<1), children 1–6 years (1–6) and children over six years (>6) in (a) all children and (b) H1N1-positive children. H1N1-positive co-infected children divided into co-infection with HRV (H1N1/HRV) and co-infection with other viruses (H1N1/other).

Similar articles

Cited by

References

    1. Guan Y, Vijaykrishna D, Bahl J, Zhu H, Wang J, et al. (2010) The emergence of pandemic influenza viruses. Protein Cell 1: 9–13. - PMC - PubMed
    1. Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom, et al (2011) Emergence of a Novel Swine-Origin Influenza A (H1N1) Virus in Humans. N Eng J Med 360: 2605–2615. - PubMed
    1. Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, et al. (2009) In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460: 1021–1025. - PMC - PubMed
    1. Falagas ME, Cholevas NV, Kapaskelis AM, Vouloumanou EK, Michalopoulos A, et al. (2010) Epidemiological aspects of 2009 H1N1 influenza: the accumulating experience from the Northern Hemisphere. Eur J Microbiol Infect Dis 29: 1327–1347. - PubMed
    1. Swedish Institute for Communicable Disease Control (2010) Influensarapport vecka 1 (4/1–10/1). [article in swedish] http://smi.se/publikationer/veckorapporter/influensarapporter/sasongen20.... [cited 7 june 2012].

MeSH terms