Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Sep;13(7):1014-24.
doi: 10.2174/18715206113139990117.

Deregulation of PI3K/Akt/mTOR signaling pathways by isoflavones and its implication in cancer treatment

Affiliations
Review

Deregulation of PI3K/Akt/mTOR signaling pathways by isoflavones and its implication in cancer treatment

Aamir Ahmad et al. Anticancer Agents Med Chem. 2013 Sep.

Abstract

Cancer remains a difficult disease to manage because of the deregulation of numerous signaling pathways that are associated with its development and progression. One such pathway is the phosphoinositide 3-kinase (PI3K) - protein kinase B (Akt) - mammalian target of rapamycin (mTOR) signaling network, which is known to be associated with poor prognosis in many human cancers. Targeted inhibition of this signaling network in vitro, in vivo and in clinics has suggested this to be an effective strategy for the inhibition of cancer cells' proliferation and metastases. Towards this end, the use of natural agents for therapeutic intervention has attracted renewed interest because of their non-toxic effects as well as their ability to modulate multiple pathways. Investigations involving isoflavones have suggested a potent anticancer activity of these compounds against multiple factors in the PI3K/Akt/mTOR pathway. In addition to their use as therapeutic agents against various cancers, there is evidence to support the role of isoflavones in potentiation of radiation therapy as well as the anticancer action of other conventional therapeutic drugs. In this review article, we discuss our current understanding of the regulation of PI3K/Akt/mTOR signaling pathways by isoflavones, which could be responsible for their observed in vitro and in vivo activity against human cancers.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms