A possible role for systemic hypoxia in the reactive component of pulmonary hypertension in heart failure
- PMID: 23273594
- PMCID: PMC3541409
- DOI: 10.1016/j.cardfail.2012.11.005
A possible role for systemic hypoxia in the reactive component of pulmonary hypertension in heart failure
Abstract
Background: The mechanisms underlying the reactive component of pulmonary hypertension (PH) in heart failure (HF) are unclear. We examined whether resting systemic oxygen levels are related to pulmonary hemodynamics in HF.
Methods and results: Thirty-nine HF patients underwent right heart catheterization. Subsequently, patients were classified as having: 1) no PH (n = 12); 2) passive PH (n = 10); or 3) reactive PH (n = 17). Blood was drawn from the radial and pulmonary arteries for the determination of PaO(2), SaO(2), PvO(2), SvO(2), and vasoactive neurohormones. PaO(2) and PvO(2) were lower in reactive PH versus no PH and passive PH patients (65.3 ± 8.6 vs 78.3 ± 11.4 mm Hg and 74.5 ± 14.0 mm Hg; 29.2 ± 4.1 vs 36.2 ± 2.8 mm Hg and 33.4 ± 2.3 mm Hg; P < .05). SaO(2) and SvO(2) were lower in reactive PH versus no PH patients (93 ± 3% vs 96 ± 3%; 51 ± 11% vs 68 ± 4%; P < .05), but not different versus passive PH patients. The transpulmonary pressure gradient (TPG) was inversely related to PaO(2), PvO(2), SaO(2), and SvO(2) in the reactive PH patients only (r ≤ -0.557; P < .05). Similarly, plasma endothelin-1 correlated with PaO(2), PvO(2), SvO(2) (r ≤ -0.495), and TPG (r = 0.662; P < .05) in reactive PH patients only.
Conclusions: Systemic hypoxia may play a role in the reactive component of PH in HF, potentially via a hypoxia-induced increase in endothelial release of the vasoconstrictor endothelin-1.
Copyright © 2013 Elsevier Inc. All rights reserved.
Figures
References
-
- Kjaergaard J, Akkan D, Iversen KK, Kjoller E, Kober L, Torp-Pedersen C, et al. Prognostic importance of pulmonary hypertension in patients with heart failure. Am J Cardiol. 2007 Apr 15;99(8):1146–50. - PubMed
-
- Abramson SV, Burke JF, Kelly JJ, Jr, Kitchen JG, 3rd, Dougherty MJ, Yih DF, et al. Pulmonary hypertension predicts mortality and morbidity in patients with dilated cardiomyopathy. Ann Intern Med. 1992 Jun 1;116(11):888–95. - PubMed
-
- McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009 Apr 28;53(17):1573–619. - PubMed
-
- Hoeper MM, Barbera JA, Channick RN, Hassoun PM, Lang IM, Manes A, et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S85–96. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
