Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;8(24):1230-9.
doi: 10.6026/97320630081230. Epub 2012 Dec 8.

Comparative genome analysis of six malarial parasites using codon usage bias based tools

Affiliations

Comparative genome analysis of six malarial parasites using codon usage bias based tools

Manoj Kumar Yadav et al. Bioinformation. 2012.

Abstract

Codon usage bias (CUB) is an omnipresent phenomenon, which occurs in nearly all organisms. Previous studies of codon bias in Plasmodium species were based on a limited dataset. This study uses whole genome datasets for comparative genome analysis of six Plasmodium species using CUB and other related methods for the first time. Codon usage bias, compositional variation in translated amino acid frequency, effective number of codons and optimal codons are analyzed for P.falciparum, P.vivax, P.knowlesi, P.berghei, P.chabaudii and P.yoelli. A plot of effective number of codons versus GC3 shows their differential codon usage pattern arises due to a combination of mutational and translational selection pressure. The increased relative usage of adenine and thymine ending optimal codons in highly expressed genes of P.falciparum is the result of higher composition biased pressure, and usage of guanine and cytosine bases at third codon position can be explained by translational selection pressure acting on them. While higher usage of adenine and thymine bases at third codon position in optimal codons of P.vivax highlights the role of translational selection pressure apart from composition biased mutation pressure in shaping their codon usage pattern. The frequency of those amino acids that are encoded by AT ending codons are significantly high in P.falciparum due to action of high composition biased mutational pressure compared with other Plasmodium species. The CUB variation in the three rodent parasites, P.berghei, P.chabaudii and P.yoelli is strikingly similar to that of P.falciparum. The simian and human malarial parasite, P.knowlesi shows a variation in codon usage bias similar to P.vivax but on closer study there are differences confirmed by the method of Principal Component Analysis (PCA).

Abbreviations: CDS - Coding sequences, GC1 - GC composition at first site of codon, GC2 - GC composition at second site of codon, GC3 - GC composition at third site of codon, Ala - Alanine, Arg - Arginine, Asn - Asparagine, Asp - Aspartic acid, Cys - Cysteine, Gln - Glutamine Glu - Glutamic acid Gly - Glycine His - Histidine Ile - Isoleucine Leu - Leucine Lys - Lysine Met - Methionine Phe - Phenylalanine Pro - Proline Ser - Serine Thr - Threonine Trp - Tryptophan Tyr - Tyrosine Val - Valine.

Keywords: Codon usage bias (CUB); Effective number of codon (ENC); Optimal codon; Principal Component Analysis (PCA); RSCU; tRNA.

PubMed Disclaimer

Figures

Figure 1
Figure 1
GC3 distribution in P.falciparum (A) and P.vivax (B), coding sequences
Figure 2
Figure 2
Comparative codon bias analysis in Plasmodium species.
Figure 3
Figure 3
Amino acid frequency in different Plasmodium species
Figure 4
Figure 4
Graph showing preferred codons for each amino acid in six Plasmodium species. Numerical values inside blocks show RSCU values of preferred codons.
Figure 5
Figure 5
Principal component analyses of relative synonymous codon usage (RSCU) indices of seven species
Figure 6
Figure 6
Graph showing the relationship between the effective number of codons (ENC) and the GC content of the third codon position (GC3) in P.falciparum (A) and P.vivax (B)

Similar articles

Cited by

References

    1. JM Carlton, et al. Nature. 2002;419:512. - PubMed
    1. MJ Gardner, et al. Nature. 2002;419:498. - PubMed
    1. JM Carlton, et al. Curr Issues Mol Biol. 2005;1:23. - PubMed
    1. JM Carlton, et al. Nature. 2008;455:757. - PMC - PubMed
    1. A Pain, et al. Nature. 2008;455:799. - PubMed