Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jan;29(1):247-62.
doi: 10.1002/bip.360290129.

Synergism through direct covalent bonding between agents: a strategy for rational design of chemotherapeutic combinations

Affiliations

Synergism through direct covalent bonding between agents: a strategy for rational design of chemotherapeutic combinations

D Rideout et al. Biopolymers. 1990 Jan.

Abstract

Self-assembling chemotherapeutic agents are mixtures of relatively nontoxic precursors that can combine chemically under physiological conditions to form products with greater cytotoxic and/or antimicrobial activity than either of the precursors. Combinations that form products more rapidly in or near the target (tumor, pathogen, virally infected cell) than in normal tissues will exhibit target-selective synergism, thus exhibiting an antitarget selectivity that is greater than the selectivities of the product (e.g., a hydrazone) and of either precursor (e.g., a hydrazine derivative or ketone) used singly. This paper describes the target-selective cytotoxic synergism of a cationic aldehyde (A) and a cationic acylhydrazine (B) containing a triarylalkylphosphonium moiety against Ehrlich ascites carcinoma cells (ELA) in culture, in addition to reviewing previous work on self-assembling cytotoxins. The synergism between A and B is carcinoma selective when the ELA cells (the target) are compared to CV-1, an untransformed African green monkey kidney epithelial line. Like tetraphenylphosphonium and rhodamine 123, which are selectively concentrated in ELA cells relative to CV-1, A, B and the hydrazone C resulting from their reaction are lipophilic delocalized cations that selectively inhibit ELA growth relative to CV-1 growth. The hydrazone C is more growth inhibitory than either A or B for both cell lines. A combination of A with an unreactive analogue of B and a combination of B with an unreactive analogue of A did not synergistically inhibit ELA proliferation. The degree of synergism is greater against the ELA cells than against the CV-1 cells. These data, together with hydrazone formation kinetics, suggest that A and B are both concentrated together selectively inside the ELA due to the transmembrane potentials, reacting inside the ELA cells at a higher velocity than inside the CV-1 cells to form the more growth-inhibitory hydrazone C.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources